Home
Class 12
MATHS
The maximum value of cos^2(pi/3-x)-cos^...

The maximum value of `cos^2(pi/3-x)-cos^2(pi/3+x)`, is

A

`(sqrt3)/(2)`

B

`1/2`

C

`-(sqrt3)/(2)`

D

`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( \cos^2\left(\frac{\pi}{3} - x\right) - \cos^2\left(\frac{\pi}{3} + x\right) \), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \cos^2\left(\frac{\pi}{3} - x\right) - \cos^2\left(\frac{\pi}{3} + x\right) \] ### Step 2: Use the identity for the difference of squares We can use the identity \( \cos^2 A - \cos^2 B = \sin(A - B) \cdot \sin(A + B) \). Here, let \( A = \frac{\pi}{3} - x \) and \( B = \frac{\pi}{3} + x \). Thus, we can rewrite the expression as: \[ \sin\left(\left(\frac{\pi}{3} - x\right) - \left(\frac{\pi}{3} + x\right)\right) \cdot \sin\left(\left(\frac{\pi}{3} - x\right) + \left(\frac{\pi}{3} + x\right)\right) \] ### Step 3: Simplify the arguments of the sine functions Calculating the first sine term: \[ \left(\frac{\pi}{3} - x\right) - \left(\frac{\pi}{3} + x\right) = -2x \] Calculating the second sine term: \[ \left(\frac{\pi}{3} - x\right) + \left(\frac{\pi}{3} + x\right) = \frac{2\pi}{3} \] Now, substituting back, we have: \[ \sin(-2x) \cdot \sin\left(\frac{2\pi}{3}\right) \] ### Step 4: Use the property of sine Using the property \( \sin(-\theta) = -\sin(\theta) \): \[ -\sin(2x) \cdot \sin\left(\frac{2\pi}{3}\right) \] ### Step 5: Calculate \( \sin\left(\frac{2\pi}{3}\right) \) We know that: \[ \sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] ### Step 6: Substitute back into the expression Now substituting this value back into our expression: \[ -\sin(2x) \cdot \frac{\sqrt{3}}{2} \] ### Step 7: Find the maximum value The maximum value of \( -\sin(2x) \) occurs when \( \sin(2x) \) is at its minimum, which is -1. Therefore: \[ \text{Maximum value} = -(-1) \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] ### Conclusion Thus, the maximum value of the expression \( \cos^2\left(\frac{\pi}{3} - x\right) - \cos^2\left(\frac{\pi}{3} + x\right) \) is: \[ \boxed{\frac{\sqrt{3}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The maximum value of sin(x+pi/5)+cos(x+pi/5), where x in (0, pi/2), is attained at

The value of cos(pi+x)cos(pi+x)sec^(2)x is

The value of cos^(-1)(cos'(3pi)/(2)) is

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

The maximum value of cos^(2)(cos(33pi + theta))+sin^(2)(sin(45pi+theta)) is

Find the value of 2cos^3(pi/7)-cos^2(pi/7)-cos(pi/7)

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

Find the absolute maximum and minimum values of f(x) = 2cos 2x - cos 4x, "x"in[0, pi].

The value of cos[1/2cos^(-1)(cos(-(14pi)/5))]\ is/are a. cos(-(7pi)/5) b. sin(pi/(10)) c. cos((2pi)/5)\ d. -cos((3pi)/5)

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. The value of cos1^0cos2^0cos3^0 cos 179^0 is 1//sqrt(2) b. 0 c. 1 d. -...

    Text Solution

    |

  2. The value of "tan"1^(@)."tan"2^(@)."tan"3^(@)......."tan"89^(@) is

    Text Solution

    |

  3. The maximum value of cos^2(pi/3-x)-cos^2(pi/3+x), is

    Text Solution

    |

  4. Which of the following is correct sin 1^@ > sin 1

    Text Solution

    |

  5. Given A=sin^2theta+cos^2theta, then for all real theta, 1lt=Alt=2 (b...

    Text Solution

    |

  6. The expression tan^(2)alpha+cot^(2)alpha,is

    Text Solution

    |

  7. If tantheta =-4/3," then " sintheta is

    Text Solution

    |

  8. If costheta+sintheta=sqrt(2)costheta, show that costheta-sintheta=sqrt...

    Text Solution

    |

  9. In a right angled triangle, the hypotenuse is four times as long as th...

    Text Solution

    |

  10. If theta lies in the first quardrant and costheta=(8)/( 17 ), then fi...

    Text Solution

    |

  11. Find the value of cos^(4)""(pi)/(8)+cos^(4)""(3pi)/(8)+cos^(4)""(5pi)/...

    Text Solution

    |

  12. If tan(A+B)=pand tan(A-B)=q, then the value of tan2A, is

    Text Solution

    |

  13. In a tringle ABC, sin A-cosB=cosC, then angle B, is

    Text Solution

    |

  14. If theta lies in the first quadrant which of the following in not true

    Text Solution

    |

  15. cos2 theta+2 costheta is always

    Text Solution

    |

  16. The interior angles of a polygon are in A.P. the smallest angle is 120...

    Text Solution

    |

  17. The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3...

    Text Solution

    |

  18. Prove that: sin36^0s in 72^0s in 108^0s in 144^0=5/(16)dot

    Text Solution

    |

  19. If A=tan6^0tan42^0 and B=cot66^0cot78^0 , then

    Text Solution

    |

  20. If sinx+cosecx=2," then "sin^nx+cosec^nx is equal to

    Text Solution

    |