Home
Class 12
MATHS
In a tringle ABC, sin A-cosB=cosC, then ...

In a tringle `ABC, sin A-cosB=cosC,` then angle B, is

A

`pi//2`

B

`pi//3`

C

`pi//4`

D

`pi//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find angle B in triangle ABC given the equation: \[ \sin A - \cos B = \cos C \] ### Step 1: Use the triangle angle sum property In any triangle, the sum of the angles is equal to \(180^\circ\) or \(\pi\) radians. Therefore, we can write: \[ A + B + C = \pi \] ### Step 2: Rearranging the given equation We can rearrange the given equation to express \(\sin A\): \[ \sin A = \cos B + \cos C \] ### Step 3: Use the sine and cosine formulas Using the sine double angle formula, we can express \(\sin A\): \[ \sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2} \] For \(\cos B + \cos C\), we can use the cosine addition formula: \[ \cos B + \cos C = 2 \cos \left(\frac{B + C}{2}\right) \cos \left(\frac{B - C}{2}\right) \] Since \(B + C = \pi - A\), we can write: \[ \cos B + \cos C = 2 \cos \left(\frac{\pi - A}{2}\right) \cos \left(\frac{B - C}{2}\right) \] ### Step 4: Simplifying the cosine expression Using the identity \(\cos(\frac{\pi - A}{2}) = \sin(\frac{A}{2})\), we have: \[ \cos B + \cos C = 2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{B - C}{2}\right) \] ### Step 5: Equating the two expressions Now we can equate the two expressions for \(\sin A\): \[ 2 \sin \frac{A}{2} \cos \frac{A}{2} = 2 \sin \frac{A}{2} \cos \left(\frac{B - C}{2}\right) \] ### Step 6: Canceling common terms Assuming \(\sin \frac{A}{2} \neq 0\), we can divide both sides by \(2 \sin \frac{A}{2}\): \[ \cos \frac{A}{2} = \cos \left(\frac{B - C}{2}\right) \] ### Step 7: Using the cosine identity From the cosine identity, we know that: \[ \frac{A}{2} = \frac{B - C}{2} \quad \text{or} \quad \frac{A}{2} = -\frac{B - C}{2} \] This gives us two cases to consider. ### Step 8: Solving the first case For the first case: \[ A = B - C \] Substituting this into the angle sum property: \[ (B - C) + B + C = \pi \] This simplifies to: \[ 2B = \pi \quad \Rightarrow \quad B = \frac{\pi}{2} \] ### Step 9: Solving the second case For the second case: \[ A = C - B \] Substituting this into the angle sum property: \[ (C - B) + B + C = \pi \] This simplifies to: \[ 2C = \pi \quad \Rightarrow \quad C = \frac{\pi}{2} \] However, since we are looking for angle B, we conclude that: \[ B = \frac{\pi}{2} \] ### Final Answer Thus, the angle B is: \[ \boxed{\frac{\pi}{2}} \text{ or } 90^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC cosA+cosB+cosC<=k then k=

In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

In a triangle ABC the expression a cosB cosC+b cosA cosB equals to :

If in a DeltaABC , cos A + 2 cosB+cosC= 2 , then a,b, c are in

In triangleABC , which is not right angled, if p=sinA sinB sinC = and q=cosA. cosB. cosC. Then the equation having roots tanA,tanB and tanC is

In a tringle ABC, AB = AC and bisector of angle A meets BC at D. Prove that : (i) DeltaABD cong DeltaACD (ii) AD is perpendicular to BC.

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. Find the value of cos^(4)""(pi)/(8)+cos^(4)""(3pi)/(8)+cos^(4)""(5pi)/...

    Text Solution

    |

  2. If tan(A+B)=pand tan(A-B)=q, then the value of tan2A, is

    Text Solution

    |

  3. In a tringle ABC, sin A-cosB=cosC, then angle B, is

    Text Solution

    |

  4. If theta lies in the first quadrant which of the following in not true

    Text Solution

    |

  5. cos2 theta+2 costheta is always

    Text Solution

    |

  6. The interior angles of a polygon are in A.P. the smallest angle is 120...

    Text Solution

    |

  7. The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3...

    Text Solution

    |

  8. Prove that: sin36^0s in 72^0s in 108^0s in 144^0=5/(16)dot

    Text Solution

    |

  9. If A=tan6^0tan42^0 and B=cot66^0cot78^0 , then

    Text Solution

    |

  10. If sinx+cosecx=2," then "sin^nx+cosec^nx is equal to

    Text Solution

    |

  11. If (x)/(a) cos alpha+ (y)/(b) sin alpha = 1, (x)/(a) cos beta + (y)/(b...

    Text Solution

    |

  12. The value of theta lying between 0 and pi/2 and satisfying |[1+sin^2th...

    Text Solution

    |

  13. The vlaue of sqrt3cot20^(@)-4cos20^(@), is

    Text Solution

    |

  14. Show that sqrt(3)\ cos e c\ 20^0-sec20^0=4.

    Text Solution

    |

  15. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  16. The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

    Text Solution

    |

  17. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , show that (tanx)/(tany)=a/b .

    Text Solution

    |

  18. if sin x + sin^2 x = 1, then the value of cos^2 x + cos^4x is

    Text Solution

    |

  19. If tan(x/2)=cosec x-sin x, then find the value of tan^(2) (x/2).

    Text Solution

    |

  20. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |