Home
Class 12
MATHS
The maximum and minimum values of -4l...

The maximum and minimum values of
`-4le5cos theta+3cos(theta+(pi)/(3))+3le10` are respectively

A

5

B

10

C

11

D

`-11`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the expression \(-4 \leq 5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right) + 3 \leq 10\), we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the term \(3 \cos\left(\theta + \frac{\pi}{3}\right)\) using the cosine addition formula: \[ \cos\left(a + b\right) = \cos a \cos b - \sin a \sin b \] Thus, we have: \[ 3 \cos\left(\theta + \frac{\pi}{3}\right) = 3 \left(\cos \theta \cos\left(\frac{\pi}{3}\right) - \sin \theta \sin\left(\frac{\pi}{3}\right)\right) \] Using \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\) and \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\), we get: \[ 3 \cos\left(\theta + \frac{\pi}{3}\right) = 3 \left(\cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2}\right) = \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \] ### Step 2: Combine the terms Now we can combine the terms: \[ 5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right) = 5 \cos \theta + \left(\frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta\right) \] This simplifies to: \[ \left(5 + \frac{3}{2}\right) \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta = \frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \] ### Step 3: Find maximum and minimum values To find the maximum and minimum values of the expression: \[ \frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \] we can use the formula for the maximum and minimum values of \(a \cos \theta + b \sin \theta\): \[ \sqrt{a^2 + b^2} \] where \(a = \frac{13}{2}\) and \(b = -\frac{3\sqrt{3}}{2}\). Calculating \(a^2 + b^2\): \[ \left(\frac{13}{2}\right)^2 + \left(-\frac{3\sqrt{3}}{2}\right)^2 = \frac{169}{4} + \frac{27}{4} = \frac{196}{4} = 49 \] Thus, the maximum value is: \[ \sqrt{49} = 7 \] And the minimum value is: \[ -\sqrt{49} = -7 \] ### Step 4: Include the constant term Now we need to include the constant term \(+3\) from the original expression: - Maximum value: \[ 7 + 3 = 10 \] - Minimum value: \[ -7 + 3 = -4 \] ### Final Result Thus, the maximum and minimum values of the expression are: - Maximum value: \(10\) - Minimum value: \(-4\)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . .

Find maximum and minimum values of 2sin(theta+(pi)/(6))+sqrt(3)cos(theta-(pi)/(6))

Find the maximum and minimum values of cos^2theta-6s inthetacostheta+3sin^2theta+2.

Find the maximum and minimum values of the expression: a cos theta + b sin theta

Find the maximum and minimum values of cos^2theta-6sinthetacostheta+3sin^2theta+2.

Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos theta + 3 sin^(2) theta + 2 .

Minimum value of 3 sin theta+4 cos theta in the interval [0, (pi)/(2)] is :

The value of a+b such that the inequality ale 5 cos theta+3cos (theta+(pi)/(3))+3le b holds true for all the real values of theta is (equality holds on both sides atleast once for real values of theta )

The minimum value of {(r+5 -4|cos theta|)^(2) +(r-3|sin theta|)^(2)} AA r, theta in R is

Find the maximum and minimum values of each of the following trigonometrical expression: \ 5costheta+3sin(pi/6-theta)+4

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. cos2 theta+2 costheta is always

    Text Solution

    |

  2. The interior angles of a polygon are in A.P. the smallest angle is 120...

    Text Solution

    |

  3. The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3...

    Text Solution

    |

  4. Prove that: sin36^0s in 72^0s in 108^0s in 144^0=5/(16)dot

    Text Solution

    |

  5. If A=tan6^0tan42^0 and B=cot66^0cot78^0 , then

    Text Solution

    |

  6. If sinx+cosecx=2," then "sin^nx+cosec^nx is equal to

    Text Solution

    |

  7. If (x)/(a) cos alpha+ (y)/(b) sin alpha = 1, (x)/(a) cos beta + (y)/(b...

    Text Solution

    |

  8. The value of theta lying between 0 and pi/2 and satisfying |[1+sin^2th...

    Text Solution

    |

  9. The vlaue of sqrt3cot20^(@)-4cos20^(@), is

    Text Solution

    |

  10. Show that sqrt(3)\ cos e c\ 20^0-sec20^0=4.

    Text Solution

    |

  11. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  12. The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

    Text Solution

    |

  13. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , show that (tanx)/(tany)=a/b .

    Text Solution

    |

  14. if sin x + sin^2 x = 1, then the value of cos^2 x + cos^4x is

    Text Solution

    |

  15. If tan(x/2)=cosec x-sin x, then find the value of tan^(2) (x/2).

    Text Solution

    |

  16. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  17. Prove that: (1+cos. (pi)/8)(1+cos. (3pi)/8)(1+cos. (5pi)/8)(1+cos. (7...

    Text Solution

    |

  18. If t a n^2theta=2t a n^2varphi+1 , prove that cos2theta+s in^2varphi=0...

    Text Solution

    |

  19. If sin2theta=cos3thetaa n dtheta is an acute angle, then sintheta equa...

    Text Solution

    |

  20. If f(x)=cos^2theta+sec^2theta, then f(x)<1 (b) f(x)=1 2>f(x)>1 (d)...

    Text Solution

    |