Home
Class 12
MATHS
if sin x + sin^2 x = 1, then the value ...

if ` sin x + sin^2 x = 1`, then the value of `cos^2 x + cos^4x` is

A

1

B

2

C

`1.5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin^2 x = 1 \) and find the value of \( \cos^2 x + \cos^4 x \), we can follow these steps: ### Step 1: Rearranging the given equation We start with the equation: \[ \sin x + \sin^2 x = 1 \] We can rearrange this to isolate \( \sin x \): \[ \sin^2 x + \sin x - 1 = 0 \] ### Step 2: Solving the quadratic equation This is a quadratic equation in terms of \( \sin x \). We can use the quadratic formula \( \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = 1, c = -1 \): \[ \sin x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 3: Finding the value of \( \cos^2 x \) Since \( \sin^2 x + \cos^2 x = 1 \), we can express \( \cos^2 x \) in terms of \( \sin x \): \[ \cos^2 x = 1 - \sin^2 x \] Using \( \sin x = \frac{-1 + \sqrt{5}}{2} \) (we take the positive root since sine values range from -1 to 1), we calculate \( \sin^2 x \): \[ \sin^2 x = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Now substituting this into the equation for \( \cos^2 x \): \[ \cos^2 x = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Finding \( \cos^4 x \) Next, we need to find \( \cos^4 x \): \[ \cos^4 x = \left(\cos^2 x\right)^2 = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] ### Step 5: Adding \( \cos^2 x \) and \( \cos^4 x \) Now we can find \( \cos^2 x + \cos^4 x \): \[ \cos^2 x + \cos^4 x = \frac{-1 + \sqrt{5}}{2} + \frac{3 - \sqrt{5}}{2} = \frac{-1 + \sqrt{5} + 3 - \sqrt{5}}{2} = \frac{2}{2} = 1 \] ### Final Answer Thus, the value of \( \cos^2 x + \cos^4 x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin x=cos^2x ,\ then write the value of cos^2x\ (1+cos^2x)dot

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sin^(3)x cos3x+cos^(3)x sin 3x=3//8 , then the value of sin 4x is ___________

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

If sin x+sin^2=1 , then cos^8 x+2 cos^6 x+cos^4 x=

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

    Text Solution

    |

  2. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , show that (tanx)/(tany)=a/b .

    Text Solution

    |

  3. if sin x + sin^2 x = 1, then the value of cos^2 x + cos^4x is

    Text Solution

    |

  4. If tan(x/2)=cosec x-sin x, then find the value of tan^(2) (x/2).

    Text Solution

    |

  5. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  6. Prove that: (1+cos. (pi)/8)(1+cos. (3pi)/8)(1+cos. (5pi)/8)(1+cos. (7...

    Text Solution

    |

  7. If t a n^2theta=2t a n^2varphi+1 , prove that cos2theta+s in^2varphi=0...

    Text Solution

    |

  8. If sin2theta=cos3thetaa n dtheta is an acute angle, then sintheta equa...

    Text Solution

    |

  9. If f(x)=cos^2theta+sec^2theta, then f(x)<1 (b) f(x)=1 2>f(x)>1 (d)...

    Text Solution

    |

  10. The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)...

    Text Solution

    |

  11. The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

    Text Solution

    |

  12. If sin(alpha+beta)=1\ a n dsin(alpha-beta)=1/2,\ w h e r e\ 0lt=,\ bet...

    Text Solution

    |

  13. If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(...

    Text Solution

    |

  14. If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical va...

    Text Solution

    |

  15. Show that tan1^0tan2^0tan89^0=1

    Text Solution

    |

  16. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |

  17. If x cosalpha+y sinalpha=2a, x cos beta+y sinbeta=2aand 2sin""(alp...

    Text Solution

    |

  18. If tan x =(2b)/ (a- c), y = acos^2 x + 2bsin x cos x + csin^2 x, z=as...

    Text Solution

    |

  19. If alpha+beta+gamma=2pi, then show that tan.alpha/2 + tan.beta/2 + tan...

    Text Solution

    |

  20. If sintheta-costhetalt0, then theta lies between

    Text Solution

    |