Home
Class 12
MATHS
The value of sin(pi/14)sin((3pi)/14)sin(...

The value of `sin(pi/14)sin((3pi)/14)sin((5pi)/14)` is

A

`1//16`

B

`1//8`

C

`1//2`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \), we can follow these steps: ### Step 1: Introduce a substitution Let \( \theta = \frac{\pi}{14} \). Then we can rewrite the expression as: \[ \sin(\theta) \sin(3\theta) \sin(5\theta) \] ### Step 2: Multiply and divide by \( 2 \cos(\theta) \) We can multiply and divide the expression by \( 2 \cos(\theta) \): \[ \sin(\theta) \sin(3\theta) \sin(5\theta) = \frac{2 \cos(\theta) \sin(\theta) \sin(3\theta) \sin(5\theta)}{2 \cos(\theta)} \] ### Step 3: Use the sine double angle identity Using the identity \( 2 \sin(a) \cos(a) = \sin(2a) \), we can write: \[ 2 \cos(\theta) \sin(\theta) = \sin(2\theta) \] Thus, we have: \[ \frac{\sin(2\theta) \sin(3\theta) \sin(5\theta)}{2 \cos(\theta)} \] ### Step 4: Multiply and divide again by \( 2 \) Now we multiply and divide by \( 2 \) again: \[ \frac{2 \sin(2\theta) \sin(3\theta) \sin(5\theta)}{4 \cos(\theta)} \] ### Step 5: Use the product-to-sum identities Using the identity \( 2 \sin(a) \sin(b) = \cos(a-b) - \cos(a+b) \): \[ 2 \sin(2\theta) \sin(5\theta) = \cos(3\theta) - \cos(7\theta) \] So we can rewrite the expression as: \[ \frac{\cos(3\theta) - \cos(7\theta)}{4 \cos(\theta)} \] ### Step 6: Substitute back for \( \theta \) Now substituting back \( \theta = \frac{\pi}{14} \): \[ \frac{\cos\left(\frac{3\pi}{14}\right) - \cos\left(\frac{7\pi}{14}\right)}{4 \cos\left(\frac{\pi}{14}\right)} \] Since \( \cos\left(\frac{7\pi}{14}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \), we have: \[ \frac{\cos\left(\frac{3\pi}{14}\right)}{4 \cos\left(\frac{\pi}{14}\right)} \] ### Step 7: Evaluate \( \cos\left(\frac{3\pi}{14}\right) \) Using the sine and cosine values, we can find that: \[ \sin\left(\frac{7\pi}{14}\right) = 1 \quad \text{and} \quad \cos\left(\frac{3\pi}{14}\right) = \sin\left(\frac{11\pi}{14}\right) \] ### Step 8: Final evaluation Thus, we have: \[ \sin\left(\frac{7\pi}{14}\right) = 1 \quad \text{and} \quad \cos\left(\frac{3\pi}{14}\right) = 0 \] This leads us to: \[ \frac{1}{8} \] ### Final Answer Thus, the value of \( \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \) is: \[ \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

let cos(pi/7),cos((3pi)/7),cos((5pi)/7), the roots of equation 8x^3 - 4x^2 - 4x +1=0 then the value of sin(pi/14),sin((3pi)/14),sin((5pi)/14)

The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)/(14)sin(11pi)/(14)sin(13pi)/(14) is equal to___________

The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin(11pi/14)sin(13pi/14) is equal to___________

The value of sin^(-1)(sin((3pi)/(5)))

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

sin^(-1)sin((3pi)/5)

The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

Prove that: sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14)=1/(64)

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If f(x)=cos^2theta+sec^2theta, then f(x)<1 (b) f(x)=1 2>f(x)>1 (d)...

    Text Solution

    |

  2. The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)...

    Text Solution

    |

  3. The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

    Text Solution

    |

  4. If sin(alpha+beta)=1\ a n dsin(alpha-beta)=1/2,\ w h e r e\ 0lt=,\ bet...

    Text Solution

    |

  5. If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(...

    Text Solution

    |

  6. If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical va...

    Text Solution

    |

  7. Show that tan1^0tan2^0tan89^0=1

    Text Solution

    |

  8. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |

  9. If x cosalpha+y sinalpha=2a, x cos beta+y sinbeta=2aand 2sin""(alp...

    Text Solution

    |

  10. If tan x =(2b)/ (a- c), y = acos^2 x + 2bsin x cos x + csin^2 x, z=as...

    Text Solution

    |

  11. If alpha+beta+gamma=2pi, then show that tan.alpha/2 + tan.beta/2 + tan...

    Text Solution

    |

  12. If sintheta-costhetalt0, then theta lies between

    Text Solution

    |

  13. Within what limits must A/2 lies if 2sinA/2=-sqrt(1+sinA)-sqrt(1-sinA)...

    Text Solution

    |

  14. If 2cos""(A)/(2)=sqrt(1+sinA)+sqrt(1-sinA), thenA/2 iles between,

    Text Solution

    |

  15. Find the angle theta whose cosine is equal to its tangent.

    Text Solution

    |

  16. Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15...

    Text Solution

    |

  17. Prove:cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)co...

    Text Solution

    |

  18. The value of tan 5 theta is

    Text Solution

    |

  19. If costheta=cos alphacosbeta, then tan((theta+alpha)/(2))tan((theta-al...

    Text Solution

    |

  20. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |