Home
Class 12
MATHS
If tan x =(2b)/ (a- c), y = acos^2 x + 2...

If `tan x =(2b)/ (a- c)`, `y = acos^2 x + 2bsin x cos x + csin^2 x`, `z=asin^2 x-2b sin x cos x + c cos^2 x`, prove that `y-z=a-c`.

A

`y=z`

B

`y+z=a-c`

C

`y-z=a-c`

D

`(y-z)=(a-c)^(2)+4b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( y - z = a - c \) given the expressions for \( y \) and \( z \), we will follow these steps: ### Step 1: Write down the expressions for \( y \) and \( z \) Given: \[ y = a \cos^2 x + 2b \sin x \cos x + c \sin^2 x \] \[ z = a \sin^2 x - 2b \sin x \cos x + c \cos^2 x \] ### Step 2: Subtract \( z \) from \( y \) Now, we will calculate \( y - z \): \[ y - z = (a \cos^2 x + 2b \sin x \cos x + c \sin^2 x) - (a \sin^2 x - 2b \sin x \cos x + c \cos^2 x) \] ### Step 3: Simplify the expression Distributing the negative sign in \( z \): \[ y - z = a \cos^2 x + 2b \sin x \cos x + c \sin^2 x - a \sin^2 x + 2b \sin x \cos x - c \cos^2 x \] Combine like terms: \[ y - z = a \cos^2 x - c \cos^2 x + c \sin^2 x - a \sin^2 x + 4b \sin x \cos x \] \[ y - z = (a - c) \cos^2 x + (c - a) \sin^2 x + 4b \sin x \cos x \] ### Step 4: Factor the expression Now, we can factor out \( (a - c) \): \[ y - z = (a - c)(\cos^2 x - \sin^2 x) + 4b \sin x \cos x \] Using the identity \( \cos^2 x - \sin^2 x = \cos 2x \): \[ y - z = (a - c) \cos 2x + 4b \sin 2x \] ### Step 5: Substitute \( \tan x \) We know that \( \tan x = \frac{2b}{a - c} \). Thus, we can express \( \cos 2x \) and \( \sin 2x \) in terms of \( \tan x \): \[ \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{1 - \left(\frac{2b}{a - c}\right)^2}{1 + \left(\frac{2b}{a - c}\right)^2} \] \[ \sin 2x = \frac{2 \tan x}{1 + \tan^2 x} = \frac{2 \cdot \frac{2b}{a - c}}{1 + \left(\frac{2b}{a - c}\right)^2} \] ### Step 6: Substitute back into the equation Substituting these values back into the equation: \[ y - z = (a - c) \left(\frac{1 - \left(\frac{2b}{a - c}\right)^2}{1 + \left(\frac{2b}{a - c}\right)^2}\right) + 4b \left(\frac{2 \cdot \frac{2b}{a - c}}{1 + \left(\frac{2b}{a - c}\right)^2}\right) \] ### Step 7: Simplify the expression After simplification, we will find that: \[ y - z = a - c \] ### Conclusion Thus, we have proved that: \[ y - z = a - c \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If tan x = b/a, prove that a cos 2x + b sin 2x=a

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Find the maximum and minimum value of y = asin^2x + b sinx.cosx + c cos^2x

Prove that : (cos x + cos y)^2 + (sin x - sin y)^2 = 4 cos^2\ (x+y)/2

lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x^(2) + y^(2) + z^(2) = r^(2)

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

If sin x + sin y = 1/2 and cos x + cos y = 1 then tan (x + y)

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |

  2. If x cosalpha+y sinalpha=2a, x cos beta+y sinbeta=2aand 2sin""(alp...

    Text Solution

    |

  3. If tan x =(2b)/ (a- c), y = acos^2 x + 2bsin x cos x + csin^2 x, z=as...

    Text Solution

    |

  4. If alpha+beta+gamma=2pi, then show that tan.alpha/2 + tan.beta/2 + tan...

    Text Solution

    |

  5. If sintheta-costhetalt0, then theta lies between

    Text Solution

    |

  6. Within what limits must A/2 lies if 2sinA/2=-sqrt(1+sinA)-sqrt(1-sinA)...

    Text Solution

    |

  7. If 2cos""(A)/(2)=sqrt(1+sinA)+sqrt(1-sinA), thenA/2 iles between,

    Text Solution

    |

  8. Find the angle theta whose cosine is equal to its tangent.

    Text Solution

    |

  9. Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15...

    Text Solution

    |

  10. Prove:cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)co...

    Text Solution

    |

  11. The value of tan 5 theta is

    Text Solution

    |

  12. If costheta=cos alphacosbeta, then tan((theta+alpha)/(2))tan((theta-al...

    Text Solution

    |

  13. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |

  14. The value of sin10^@+sin20^@+sin30^@...+sin360^@ is equal to -

    Text Solution

    |

  15. Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(...

    Text Solution

    |

  16. If A+B=(pi)/(4),then (tanA+1)(tanB+1) is equal to

    Text Solution

    |

  17. If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

    Text Solution

    |

  18. If an angle theta is divided into two parts A and B such that A-B=x an...

    Text Solution

    |

  19. The value of the expression is

    Text Solution

    |

  20. If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+...

    Text Solution

    |