Home
Class 12
MATHS
If sinA+sinB=a and cosA+cosB=b,then cos(...

If `sinA+sinB=a and cosA+cosB=b,then cos(A+B)`

A

`(a^(2)+b^(2))/(b^(2)-a^(2))`

B

`(2ab)/(a^(2)+b^(2))`

C

`(b^(2)-a^(2))/(a^(2)+b^(2))`

D

`(a^(2)-b^(2))/(a^(2)+b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(A + B) \) given that \( \sin A + \sin B = a \) and \( \cos A + \cos B = b \). ### Step-by-step Solution: 1. **Square the equations**: Start by squaring both given equations: \[ (\sin A + \sin B)^2 = a^2 \quad \text{(1)} \] \[ (\cos A + \cos B)^2 = b^2 \quad \text{(2)} \] 2. **Expand the squares**: Expanding both equations, we get: \[ \sin^2 A + \sin^2 B + 2 \sin A \sin B = a^2 \quad \text{(1)} \] \[ \cos^2 A + \cos^2 B + 2 \cos A \cos B = b^2 \quad \text{(2)} \] 3. **Use the Pythagorean identity**: Recall that \( \sin^2 A + \cos^2 A = 1 \) and \( \sin^2 B + \cos^2 B = 1 \). Therefore, we can write: \[ \sin^2 A + \cos^2 A = 1 \quad \text{and} \quad \sin^2 B + \cos^2 B = 1 \] Adding these two identities gives: \[ (\sin^2 A + \cos^2 A) + (\sin^2 B + \cos^2 B) = 2 \] Thus: \[ \sin^2 A + \sin^2 B + \cos^2 A + \cos^2 B = 2 \] 4. **Combine equations (1) and (2)**: Now, adding equations (1) and (2): \[ (\sin^2 A + \sin^2 B) + (\cos^2 A + \cos^2 B) + 2(\sin A \sin B + \cos A \cos B) = a^2 + b^2 \] Since \( \sin^2 A + \cos^2 A + \sin^2 B + \cos^2 B = 2 \): \[ 2 + 2(\sin A \sin B + \cos A \cos B) = a^2 + b^2 \] 5. **Simplify the equation**: Rearranging gives: \[ 2(\sin A \sin B + \cos A \cos B) = a^2 + b^2 - 2 \] Dividing by 2: \[ \sin A \sin B + \cos A \cos B = \frac{a^2 + b^2 - 2}{2} \] 6. **Use the cosine addition formula**: Recall the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] We can express \( \cos A \cos B \) in terms of \( \sin A \sin B \): \[ \cos A \cos B = \frac{(b^2 - a^2)}{2} + \sin A \sin B \] 7. **Substitute back**: Substitute \( \sin A \sin B \) from the previous step: \[ \cos(A + B) = \frac{(b^2 - a^2)}{2} - \frac{(a^2 + b^2 - 2)}{2} \] 8. **Final simplification**: Simplifying gives: \[ \cos(A + B) = \frac{b^2 - a^2}{a^2 + b^2} \] ### Final Result: Thus, the value of \( \cos(A + B) \) is: \[ \cos(A + B) = \frac{b^2 - a^2}{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

If sinA + sinB = a and cosA+cosB=b , prove that: i) sin(A+B)=(2ab)/(a^(2)+b^(2)) ii) tan(A+B)= (2ab)/(b^(2)-a^(2))

If sinA=sin B and cosA=cosB , then find the value of A in terms of Bdot

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

In triangleABC , which is not right angled, if p=sinA sinB sinC = and q=cosA. cosB. cosC. Then the equation having roots tanA,tanB and tanC is

If sinA = sinBandcosA=cosA=cosB, then which one of the following is correct ?

Suppose A and B are two angles such that A , B in (0,pi) and satisfy sinA+sinB=1 and cosA+cosB=0. Then the value of 12cos2A+4cos2B is____

Suppose A and B are two angles such that A , B in (0,pi) and satisfy sinA+sinB=1 and cosA+cosB=0. Then the value of 12cos2A+4cos2B is____

If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)tan^2B is equal to

If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(...

    Text Solution

    |

  2. If A+B=(pi)/(4),then (tanA+1)(tanB+1) is equal to

    Text Solution

    |

  3. If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

    Text Solution

    |

  4. If an angle theta is divided into two parts A and B such that A-B=x an...

    Text Solution

    |

  5. The value of the expression is

    Text Solution

    |

  6. If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+...

    Text Solution

    |

  7. If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gam...

    Text Solution

    |

  8. If sin x+siny=3(cosy-cosx),then the value of (sin3x)/(sin3y), is

    Text Solution

    |

  9. If cosx=tany ,cosy=tanz ,cosz=tanx , then the value of sinx is 2cos18^...

    Text Solution

    |

  10. If k=sin^(6)x+cos^(6)x, then k belongs to the interval

    Text Solution

    |

  11. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  12. If tan^(2)alpha tan^(2)beta+tan^(2)gamma+tan^(2)gamma tan^(2)alpha+2ta...

    Text Solution

    |

  13. the value of e^(log(10)tan1^@+log(10)tan2^@+log(10)tan3^@....+log(10)t...

    Text Solution

    |

  14. For what and only what values of alpha lying between 0 and pi/2 is the...

    Text Solution

    |

  15. If (secA+tanA)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC)...

    Text Solution

    |

  16. If pi lt alpha lt (3pi)/(2), then find the value of expression sqrt(4 ...

    Text Solution

    |

  17. If alpha is an acute angle and sin(alpha/2)=sqrt((x-1)/(2x)) then tan ...

    Text Solution

    |

  18. Find the Value of tan 82 1/2^@

    Text Solution

    |

  19. The value of tan6^0tan42^0tan66^0tan78^0 is 1 (b) 1/2 (c) 1/4 (d)...

    Text Solution

    |

  20. The value of cot36^(@)cot72^(@), is

    Text Solution

    |