Home
Class 12
MATHS
For what and only what values of alpha l...

For what and only what values of `alpha` lying between `0 and pi/2` is the inequality is `sin alphacos^(3)alpha ltsin^(3) alpha cos alpha` valid?

A

`alpha in(0,pi//4)`

B

`alpha in(0,pi//2)`

C

`alpha in(pi//4,pi//2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sin \alpha \cos^3 \alpha < \sin^3 \alpha \cos \alpha \) for values of \( \alpha \) in the interval \( (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Rearranging the Inequality Start by rearranging the given inequality: \[ \sin \alpha \cos^3 \alpha - \sin^3 \alpha \cos \alpha < 0 \] ### Step 2: Factoring Out Common Terms Factor out \( \sin \alpha \cos \alpha \): \[ \sin \alpha \cos \alpha \left( \cos^2 \alpha - \sin^2 \alpha \right) < 0 \] ### Step 3: Identifying the Factors Now we have two factors: 1. \( \sin \alpha \cos \alpha \) 2. \( \cos^2 \alpha - \sin^2 \alpha \) ### Step 4: Analyzing the First Factor The first factor, \( \sin \alpha \cos \alpha \), is positive in the interval \( (0, \frac{\pi}{2}) \) because both sine and cosine are positive in this interval. ### Step 5: Analyzing the Second Factor Next, we analyze the second factor, \( \cos^2 \alpha - \sin^2 \alpha \): \[ \cos^2 \alpha - \sin^2 \alpha < 0 \] This can be rewritten as: \[ \cos^2 \alpha < \sin^2 \alpha \] or \[ \tan^2 \alpha > 1 \] which implies: \[ \tan \alpha > 1 \] ### Step 6: Finding the Critical Point The inequality \( \tan \alpha > 1 \) holds when: \[ \alpha > \frac{\pi}{4} \] ### Step 7: Combining the Results Since \( \sin \alpha \cos \alpha > 0 \) for \( \alpha \in (0, \frac{\pi}{2}) \) and \( \cos^2 \alpha - \sin^2 \alpha < 0 \) for \( \alpha > \frac{\pi}{4} \), we conclude that the inequality holds for: \[ \frac{\pi}{4} < \alpha < \frac{\pi}{2} \] ### Final Answer Thus, the values of \( \alpha \) for which the inequality is valid are: \[ \alpha \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Find the values of alpha lying between 0 and pi for which the inequality : tan alpha> tan^3 alpha is valid.

Find the values of alpha lying between 0 and pi for which of the inequality: tanalpha gt tan^(3) alpha is valid.

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).

The set of values of alpha (alpha gt 0) for which the inequality int_(-alpha)^(alpha) e^x dx gt 3/2 holds true is :

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

If alpha and beta are two different values of theta lying between 0 and 2pi which satisfy the equations 6costheta+8sin theta=9 , find the value of sin2(alpha+beta) .

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If tan^(2)alpha tan^(2)beta+tan^(2)gamma+tan^(2)gamma tan^(2)alpha+2ta...

    Text Solution

    |

  2. the value of e^(log(10)tan1^@+log(10)tan2^@+log(10)tan3^@....+log(10)t...

    Text Solution

    |

  3. For what and only what values of alpha lying between 0 and pi/2 is the...

    Text Solution

    |

  4. If (secA+tanA)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC)...

    Text Solution

    |

  5. If pi lt alpha lt (3pi)/(2), then find the value of expression sqrt(4 ...

    Text Solution

    |

  6. If alpha is an acute angle and sin(alpha/2)=sqrt((x-1)/(2x)) then tan ...

    Text Solution

    |

  7. Find the Value of tan 82 1/2^@

    Text Solution

    |

  8. The value of tan6^0tan42^0tan66^0tan78^0 is 1 (b) 1/2 (c) 1/4 (d)...

    Text Solution

    |

  9. The value of cot36^(@)cot72^(@), is

    Text Solution

    |

  10. The value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+cos(6...

    Text Solution

    |

  11. Find the value of cos(2pi)/7+cos(4pi)/7+cos(6pi)/7

    Text Solution

    |

  12. The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

    Text Solution

    |

  13. Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi...

    Text Solution

    |

  14. The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)...

    Text Solution

    |

  15. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  16. the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

    Text Solution

    |

  17. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  18. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  19. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  20. If y=(tanx)/(tan3x), then

    Text Solution

    |