Home
Class 12
MATHS
The value of cot36^(@)cot72^(@), is...

The value of `cot36^(@)cot72^(@),` is

A

`1//5`

B

`1//sqrt5`

C

1

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cot 36^\circ \cot 72^\circ \), we can follow these steps: ### Step 1: Rewrite cotangent in terms of tangent We know that: \[ \cot \theta = \frac{1}{\tan \theta} \] Thus, we can rewrite the expression: \[ \cot 36^\circ \cot 72^\circ = \frac{1}{\tan 36^\circ} \cdot \frac{1}{\tan 72^\circ} = \frac{1}{\tan 36^\circ \tan 72^\circ} \] ### Step 2: Use the identity for tangent of complementary angles We know that: \[ \tan(90^\circ - \theta) = \cot \theta \] So, we can express \( \tan 72^\circ \) as: \[ \tan 72^\circ = \cot 18^\circ \] Thus, we have: \[ \cot 36^\circ \cot 72^\circ = \frac{1}{\tan 36^\circ \cot 18^\circ} = \frac{1}{\tan 36^\circ \cdot \frac{1}{\tan 18^\circ}} = \frac{\tan 18^\circ}{\tan 36^\circ} \] ### Step 3: Use the double angle formula for tangent Using the double angle formula: \[ \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \] Let \( x = 18^\circ \), then: \[ \tan 36^\circ = \tan(2 \cdot 18^\circ) = \frac{2 \tan 18^\circ}{1 - \tan^2 18^\circ} \] Substituting this into our expression gives: \[ \cot 36^\circ \cot 72^\circ = \frac{\tan 18^\circ}{\frac{2 \tan 18^\circ}{1 - \tan^2 18^\circ}} = \frac{1 - \tan^2 18^\circ}{2} \] ### Step 4: Substitute the value of \( \tan 18^\circ \) We know: \[ \tan 18^\circ = \sqrt{5 - 2\sqrt{5}}/5 \] Substituting this value into our expression: \[ \cot 36^\circ \cot 72^\circ = \frac{1 - \left(\frac{\sqrt{5 - 2\sqrt{5}}}{5}\right)^2}{2} \] ### Step 5: Simplify the expression Calculating \( \left(\frac{\sqrt{5 - 2\sqrt{5}}}{5}\right)^2 \): \[ = \frac{5 - 2\sqrt{5}}{25} \] Thus, we have: \[ \cot 36^\circ \cot 72^\circ = \frac{1 - \frac{5 - 2\sqrt{5}}{25}}{2} \] Finding a common denominator: \[ = \frac{\frac{25 - (5 - 2\sqrt{5})}{25}}{2} = \frac{\frac{20 + 2\sqrt{5}}{25}}{2} = \frac{20 + 2\sqrt{5}}{50} = \frac{2(10 + \sqrt{5})}{50} = \frac{10 + \sqrt{5}}{25} \] ### Final Result Thus, the value of \( \cot 36^\circ \cot 72^\circ \) is: \[ \frac{10 + \sqrt{5}}{25} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of cot18^(@)(cot72^(@)cos^(2)22^(@)+(1)/(tan72^(@)sec^(2)68^(@))) is

The value of tan63^(@)-cot63^(@) is equal to

The value of "tan"75^(@)-"cot"75^(@) is equal to

The value of (cot84^(@)cot48^(@))/(cot66^(@)cot78^(@)) is equal to

The value of cot^(pi)/(4)-2 cot^(-13) is

The value of 1+cot ^2A is

The value of (3+cot76^@cot16^@)/(cot76^@+cot16^@) is

The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), is

The value of cotx+cot(60^@+x)+cot(120^@+x) is equal to

Value of tan 75^(@) + cot 75^(@) = ?

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. Find the Value of tan 82 1/2^@

    Text Solution

    |

  2. The value of tan6^0tan42^0tan66^0tan78^0 is 1 (b) 1/2 (c) 1/4 (d)...

    Text Solution

    |

  3. The value of cot36^(@)cot72^(@), is

    Text Solution

    |

  4. The value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+cos(6...

    Text Solution

    |

  5. Find the value of cos(2pi)/7+cos(4pi)/7+cos(6pi)/7

    Text Solution

    |

  6. The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

    Text Solution

    |

  7. Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi...

    Text Solution

    |

  8. The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)...

    Text Solution

    |

  9. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  10. the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

    Text Solution

    |

  11. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  12. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  13. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  14. If y=(tanx)/(tan3x), then

    Text Solution

    |

  15. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  16. The value of sin""(pi)/(7)+sin""(2pi)/(7)+sin""(3pi)/(7), is

    Text Solution

    |

  17. Prove that sin. (2pi)/(7)+sin.(4pi)/(7)+sin. (8pi)/(7)=(sqrt(7))/(2).

    Text Solution

    |

  18. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  19. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  20. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |