Home
Class 12
MATHS
sin1 2^(@)sin4 8^(@)sin5 4^(@)=...

`sin1 2^(@)sin4 8^(@)sin5 4^(@)=`

A

`1//4`

B

`1//8`

C

`1//16`

D

`1//64`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin 12^\circ \cdot \sin 48^\circ \cdot \sin 54^\circ \), we can follow these steps: ### Step 1: Use the product-to-sum identities We can use the product-to-sum identities for sine functions. The identity states: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \] We will first combine \( \sin 12^\circ \) and \( \sin 48^\circ \). ### Step 2: Rewrite the expression We can rewrite the expression as: \[ \sin 12^\circ \cdot \sin 48^\circ = \frac{1}{2} \left( \cos(12^\circ - 48^\circ) - \cos(12^\circ + 48^\circ) \right) \] Calculating the angles: - \( 12^\circ - 48^\circ = -36^\circ \) - \( 12^\circ + 48^\circ = 60^\circ \) Thus, we have: \[ \sin 12^\circ \cdot \sin 48^\circ = \frac{1}{2} \left( \cos(-36^\circ) - \cos(60^\circ) \right) \] Since \( \cos(-x) = \cos(x) \), we can simplify this to: \[ \sin 12^\circ \cdot \sin 48^\circ = \frac{1}{2} \left( \cos(36^\circ) - \frac{1}{2} \right) \] ### Step 3: Multiply by \( \sin 54^\circ \) Now, we multiply by \( \sin 54^\circ \): \[ \sin 12^\circ \cdot \sin 48^\circ \cdot \sin 54^\circ = \frac{1}{2} \left( \cos(36^\circ) - \frac{1}{2} \right) \cdot \sin 54^\circ \] ### Step 4: Use the product-to-sum identity again Now we can apply the product-to-sum identity again: \[ 2 \sin A \cos B = \sin(A + B) + \sin(A - B) \] Let \( A = 54^\circ \) and \( B = 36^\circ \): \[ \sin 54^\circ \cdot \cos 36^\circ = \frac{1}{2} \left( \sin(54^\circ + 36^\circ) + \sin(54^\circ - 36^\circ) \right) \] Calculating the angles: - \( 54^\circ + 36^\circ = 90^\circ \) - \( 54^\circ - 36^\circ = 18^\circ \) Thus: \[ \sin 54^\circ \cdot \cos 36^\circ = \frac{1}{2} \left( 1 + \sin(18^\circ) \right) \] ### Step 5: Substitute back Now substituting back into our expression: \[ \sin 12^\circ \cdot \sin 48^\circ \cdot \sin 54^\circ = \frac{1}{2} \left( \frac{1}{2} \left( 1 + \sin(18^\circ) \right) - \frac{1}{2} \right) \] ### Step 6: Simplify Now we simplify: \[ = \frac{1}{4} \left( 1 + \sin(18^\circ) - 1 \right) = \frac{1}{4} \sin(18^\circ) \] ### Step 7: Final calculation Using known values: \[ \sin(18^\circ) = \frac{\sqrt{5} - 1}{4} \] Thus: \[ \sin 12^\circ \cdot \sin 48^\circ \cdot \sin 54^\circ = \frac{1}{4} \cdot \frac{\sqrt{5} - 1}{4} = \frac{\sqrt{5} - 1}{16} \] ### Conclusion After evaluating all the steps, we find that: \[ \sin 12^\circ \cdot \sin 48^\circ \cdot \sin 54^\circ = \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 1^(@) .

The arithmetic mean of the numbers 2sin2^(@), 4sin4^(@), 6 sin 6^(@), …………. 178 sin 178^(@), 180 sin 180^(@)

The sum 1/(sin4 5^(@)sin4 6^(@))+1/(sin4 7^(@)sin4 8^(@)) +1/(sin 49^@ sin 50^@)+...+1/(sin 133^@ sin 134^@) is equal to

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Let a=sin^(-)(sin3)+sin^(-1)(sin4)+sin^(-1)(sin5),f(x)=e^(x^(2)+|x|), domain of f(x) be [a,oo) & range of f(x) be [b,oo) and g(x)=(4cos^(4)x-2cos2x-1/4"cos"4x-x^(7))^(1//7) , domain & range of g(x) is set of real numbers. Which of the following are correct

sin 4x sin 8x

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi...

    Text Solution

    |

  2. The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)...

    Text Solution

    |

  3. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  4. the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

    Text Solution

    |

  5. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  6. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  7. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  8. If y=(tanx)/(tan3x), then

    Text Solution

    |

  9. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  10. The value of sin""(pi)/(7)+sin""(2pi)/(7)+sin""(3pi)/(7), is

    Text Solution

    |

  11. Prove that sin. (2pi)/(7)+sin.(4pi)/(7)+sin. (8pi)/(7)=(sqrt(7))/(2).

    Text Solution

    |

  12. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  13. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  14. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  15. If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  16. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  17. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  18. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  19. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  20. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |