Home
Class 12
MATHS
the value of sin(pi/7)+sin((2pi)/7)+sin(...

the value of `sin(pi/7)+sin((2pi)/7)+sin((3pi)/7)` is

A

`cot""(pi)/(14)`

B

`1/2cot""(pi)/(14)`

C

`tan""(pi)/(14)`

D

`1/2tan""(pi)/(14)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) \), we can use trigonometric identities to simplify the expression step by step. ### Step-by-Step Solution: 1. **Write the Expression**: \[ S = \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) \] 2. **Use the Sum-to-Product Identity**: We can combine the first two sine terms using the identity: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Let \( A = \frac{\pi}{7} \) and \( B = \frac{2\pi}{7} \): \[ \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{2\pi}{7}\right) = 2 \sin\left(\frac{\frac{\pi}{7} + \frac{2\pi}{7}}{2}\right) \cos\left(\frac{\frac{\pi}{7} - \frac{2\pi}{7}}{2}\right) \] Simplifying gives: \[ = 2 \sin\left(\frac{3\pi}{14}\right) \cos\left(-\frac{\pi}{14}\right) = 2 \sin\left(\frac{3\pi}{14}\right) \cos\left(\frac{\pi}{14}\right) \] 3. **Combine with the Third Term**: Now we add \( \sin\left(\frac{3\pi}{7}\right) \): \[ S = 2 \sin\left(\frac{3\pi}{14}\right) \cos\left(\frac{\pi}{14}\right) + \sin\left(\frac{3\pi}{7}\right) \] 4. **Rewrite \( \sin\left(\frac{3\pi}{7}\right) \)**: We can express \( \sin\left(\frac{3\pi}{7}\right) \) using the identity: \[ \sin\left(\frac{3\pi}{7}\right) = \sin\left(\pi - \frac{3\pi}{7}\right) = \sin\left(\frac{4\pi}{7}\right) \] 5. **Use the Sum-to-Product Identity Again**: Now we can combine \( \sin\left(\frac{3\pi}{14}\right) \) and \( \sin\left(\frac{4\pi}{7}\right) \): \[ S = 2 \sin\left(\frac{3\pi}{14}\right) \cos\left(\frac{\pi}{14}\right) + \sin\left(\frac{4\pi}{7}\right) \] 6. **Final Combination**: We can use the identities again to combine the terms: \[ S = 2 \sin\left(\frac{3\pi}{14}\right) \cos\left(\frac{\pi}{14}\right) + 2 \sin\left(\frac{4\pi}{14}\right) \cos\left(\frac{3\pi}{14}\right) \] 7. **Use the Final Identity**: Finally, we can combine these using the sine addition formula: \[ S = \frac{1}{2} \cos\left(\frac{\pi}{14}\right) \] ### Conclusion: The value of \( \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) \) is: \[ \frac{1}{2} \cos\left(\frac{\pi}{14}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

let cos(pi/7),cos((3pi)/7),cos((5pi)/7), the roots of equation 8x^3 - 4x^2 - 4x +1=0 then the value of sin(pi/14),sin((3pi)/14),sin((5pi)/14)

The value of cos(pi/7)+cos((2pi)/7)+cos((3pi)/7)+cos((4pi)/7)+cos((5pi)/7)+cos((6pi)/7)+cos((7pi)/7) is 1 (b) -1 (c) 0 (d) none of these

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

The value of sin^(-1)(sin((3pi)/(5)))

Prove that: sin ((pi)/(7))+sin((2pi)/(7)) + sin((8pi)/(7)) + sin((9pi)/(7))=0

The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

Using the identity sin^(4) x=3/8-1/2 cos 2x+1/8 cos 4x or otherwise, if the value of sin^(4)(pi/7)+sin^(4)((3pi)/(7))+sin^(4)((5pi)/(7))=a/b , where a and b are coprime, find the value of (a-b) .

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)...

    Text Solution

    |

  2. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  3. the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

    Text Solution

    |

  4. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  5. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  6. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  7. If y=(tanx)/(tan3x), then

    Text Solution

    |

  8. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  9. The value of sin""(pi)/(7)+sin""(2pi)/(7)+sin""(3pi)/(7), is

    Text Solution

    |

  10. Prove that sin. (2pi)/(7)+sin.(4pi)/(7)+sin. (8pi)/(7)=(sqrt(7))/(2).

    Text Solution

    |

  11. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  12. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  13. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  14. If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  15. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  16. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  17. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  18. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  19. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  20. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |