Home
Class 12
MATHS
(sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=...

`(sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=`

A

`cos2A`

B

`8cos2A`

C

`1//8cos2A`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin^2 3A}{\sin^2 A} - \frac{\cos^2 3A}{\cos^2 A}\), we will follow these steps: ### Step 1: Rewrite the expression Start by rewriting the expression using a common denominator: \[ \frac{\sin^2 3A \cdot \cos^2 A - \cos^2 3A \cdot \sin^2 A}{\sin^2 A \cdot \cos^2 A} \] ### Step 2: Recognize the difference of squares Notice that the numerator can be expressed as a difference of squares: \[ \sin^2 3A \cdot \cos^2 A - \cos^2 3A \cdot \sin^2 A = (\sin 3A \cdot \cos A + \sin A \cdot \cos 3A)(\sin 3A \cdot \cos A - \sin A \cdot \cos 3A) \] ### Step 3: Apply the sine addition and subtraction formulas Using the sine addition and subtraction formulas: - \(\sin(a + b) = \sin a \cos b + \cos a \sin b\) - \(\sin(a - b) = \sin a \cos b - \cos a \sin b\) We can rewrite the factors: 1. \(\sin(3A + A) = \sin(4A)\) 2. \(\sin(3A - A) = \sin(2A)\) Thus, we can rewrite the numerator: \[ \sin 4A \cdot \sin 2A \] ### Step 4: Substitute back into the expression Now substitute back into the expression: \[ \frac{\sin 4A \cdot \sin 2A}{\sin^2 A \cdot \cos^2 A} \] ### Step 5: Simplify using the double angle formula Recall that \(\sin 4A = 2 \sin 2A \cos 2A\). Therefore: \[ \frac{2 \sin 2A \cos 2A \cdot \sin 2A}{\sin^2 A \cdot \cos^2 A} \] ### Step 6: Combine the terms This simplifies to: \[ \frac{2 \sin^2 2A \cos 2A}{\sin^2 A \cdot \cos^2 A} \] ### Step 7: Factor out constants Now, we can multiply and divide by 4: \[ \frac{4 \sin^2 2A \cos 2A}{4 \sin^2 A \cos^2 A} \] ### Step 8: Cancel out \(\sin^2 2A\) Since \(\sin^2 2A\) and \(\sin^2 A\) are both present, we can simplify: \[ = 8 \cos 2A \] ### Final Answer Thus, the final answer is: \[ 8 \cos 2A \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove the following identity: (sin^3A+cos^3A)/(sinA+cosA)+(sin^3A-cos^3A)/(sinA-cosA)=2

Prove the following identity: (1-sin AcosA)/(cos A(s e c A-cosec A))dot(sin^2A-cos^2A)/(sin^3 A+cos^3 A)=sin A

Show that : sin^8 A-cos^8 A = (sin^2 A - cos^2 A) (1-2 sin^2 A*cos^2 A)

Prove that: (sin5A cos2A-sin6A\ cos A)/(sin A\ sin2A-cos2A cos3A)=t a n A

Integrate the following: int{(5cos^3x+2sin^3 x)/(2sin^2 x*cos^2 x)+sqrt(1+sin2x)+(1+2sin x)/(cos^2x)+(1-cos2x)/(1+cos 2x)}dx

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

Prove that : (1+sin 2A)/(cos 2A) = (cos A + sin A)/(cos A - sin A) = tan (pi/4 + A)

If A = 30^(@) , show that : (i) (1 + sin 2A + cos 2A)/(sin A + cos A) = 2 cos A (ii) (cos^(3)A - cos 3A)/(cos A) + (sin^(3)A + sin 3A)/(sin A) = 3

Prove the following identities: sin^4A-cos^4A=sin^2A-cos^2A=2sin^2A-1=1-2cos^2A

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

    Text Solution

    |

  2. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  3. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  4. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  5. If y=(tanx)/(tan3x), then

    Text Solution

    |

  6. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  7. The value of sin""(pi)/(7)+sin""(2pi)/(7)+sin""(3pi)/(7), is

    Text Solution

    |

  8. Prove that sin. (2pi)/(7)+sin.(4pi)/(7)+sin. (8pi)/(7)=(sqrt(7))/(2).

    Text Solution

    |

  9. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  10. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  11. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  12. If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  13. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  14. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  15. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  16. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  17. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  18. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  19. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  20. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |