Home
Class 12
MATHS
If sinA=(336)/(625)where450^(@)ltAlt540^...

If `sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=`

A

`3//5`

B

`-3//5`

C

`4//5`

D

`-4//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin \frac{A}{4} \) given that \( \sin A = \frac{336}{625} \) and \( 450^\circ < A < 540^\circ \). ### Step-by-Step Solution: 1. **Identify the Quadrant for Angle A**: Since \( A \) is between \( 450^\circ \) and \( 540^\circ \), it lies in the second quadrant where sine is positive and cosine is negative. 2. **Use the Pythagorean Identity**: We know the identity: \[ \sin^2 A + \cos^2 A = 1 \] Given \( \sin A = \frac{336}{625} \), we can find \( \cos A \): \[ \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{336}{625}\right)^2 \] 3. **Calculate \( \sin^2 A \)**: \[ \sin^2 A = \left(\frac{336}{625}\right)^2 = \frac{112896}{390625} \] 4. **Calculate \( \cos^2 A \)**: \[ \cos^2 A = 1 - \frac{112896}{390625} = \frac{390625 - 112896}{390625} = \frac{277729}{390625} \] 5. **Find \( \cos A \)**: Since \( A \) is in the second quadrant, \( \cos A \) will be negative: \[ \cos A = -\sqrt{\frac{277729}{390625}} = -\frac{527}{625} \] 6. **Use the Half-Angle Formula**: We can use the half-angle formula for cosine: \[ \cos A = 2 \cos^2 \frac{A}{2} - 1 \] Setting \( \cos A = -\frac{527}{625} \): \[ 2 \cos^2 \frac{A}{2} - 1 = -\frac{527}{625} \] 7. **Solve for \( \cos^2 \frac{A}{2} \)**: Rearranging gives: \[ 2 \cos^2 \frac{A}{2} = -\frac{527}{625} + 1 = \frac{98}{625} \] Therefore, \[ \cos^2 \frac{A}{2} = \frac{49}{625} \] 8. **Find \( \cos \frac{A}{2} \)**: Since \( \frac{A}{2} \) is between \( 225^\circ \) and \( 270^\circ \) (third quadrant), \( \cos \frac{A}{2} \) will also be negative: \[ \cos \frac{A}{2} = -\frac{7}{25} \] 9. **Use the Half-Angle Formula for Sine**: We can now use the half-angle formula for sine: \[ \cos \frac{A}{2} = \sqrt{1 - \sin^2 \frac{A}{2}} \] Rearranging gives: \[ \sin^2 \frac{A}{2} = 1 - \cos^2 \frac{A}{2} = 1 - \left(-\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] 10. **Find \( \sin \frac{A}{2} \)**: Taking the square root gives: \[ \sin \frac{A}{2} = \sqrt{\frac{576}{625}} = \frac{24}{25} \] 11. **Use the Half-Angle Formula for Sine Again**: Now, we can find \( \sin \frac{A}{4} \): \[ \sin \frac{A}{4} = \sqrt{\frac{1 - \cos \frac{A}{2}}{2}} = \sqrt{\frac{1 + \frac{7}{25}}{2}} = \sqrt{\frac{\frac{32}{25}}{2}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] ### Final Answer: \[ \sin \frac{A}{4} = \frac{4}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sinA=3/5 , where 0^0ltAlt90^0 , then find the values of sin2A , cos2A ,tan2A and sin4A

If sin A=3/5,w h e r e0^0ltAlt90^0 , then find the values of sin2A , cos2A, tan2A and sin4A

If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

If sinA = 3/5 and 0^@ lt A lt 90^@ , find the value of sin 2A, cos 2A, tan 2A, and sin 4A .

(tan(-theta))/(sin(540^(@)+theta))

If sinA=4/5 and cosB=5/(13) ,where 0ltAltpi/2 ; 0ltBltpi/2 , find the value of the following : (iii).Sin(A-B)

If sinA=3/5 and cosB =-12/15 , where A and B both lie in second quadrant, then find the value of sin(A+B).

Simplify (1)/((625)^(-1//4)) .

If A=30^(@) , show that : (sinA-cosA)^(2)=1-sin2A

Prove that: sinA.sin(60^(@)+A).sin(60^(@)-A)=1/4sin3A

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  2. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  3. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  4. If y=(tanx)/(tan3x), then

    Text Solution

    |

  5. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  6. The value of sin""(pi)/(7)+sin""(2pi)/(7)+sin""(3pi)/(7), is

    Text Solution

    |

  7. Prove that sin. (2pi)/(7)+sin.(4pi)/(7)+sin. (8pi)/(7)=(sqrt(7))/(2).

    Text Solution

    |

  8. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  9. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  10. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  11. If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  12. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  13. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  14. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  15. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  16. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  17. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  18. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  19. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  20. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |