Home
Class 12
MATHS
If y=(tanx)/(tan3x), then...

If `y=(tanx)/(tan3x),` then

A

`yin[1//3,3]`

B

`y!in[1//3,3]`

C

`yin[-3,-1//3]`

D

`yin[-3,-1//3]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = \frac{\tan x}{\tan 3x} \), we will derive the expression for \( y \) and find its range step by step. ### Step-by-Step Solution: 1. **Write the given expression**: \[ y = \frac{\tan x}{\tan 3x} \] 2. **Use the formula for \(\tan 3x\)**: The formula for \(\tan 3x\) is: \[ \tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \] Substituting this into our expression for \(y\): \[ y = \frac{\tan x}{\frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}} = \frac{\tan x (1 - 3\tan^2 x)}{3\tan x - \tan^3 x} \] 3. **Simplify the expression**: Cancel \(\tan x\) from the numerator and denominator (assuming \(\tan x \neq 0\)): \[ y = \frac{1 - 3\tan^2 x}{3 - \tan^2 x} \] 4. **Let \(t = \tan^2 x\)**: Substitute \(t\) for \(\tan^2 x\): \[ y = \frac{1 - 3t}{3 - t} \] 5. **Cross-multiply to eliminate the fraction**: Rearranging gives: \[ y(3 - t) = 1 - 3t \] Expanding this: \[ 3y - yt = 1 - 3t \] 6. **Rearranging terms**: Collecting like terms yields: \[ yt - 3t = 3y - 1 \] Factoring out \(t\): \[ t(y - 3) = 3y - 1 \] 7. **Solve for \(t\)**: Thus, we have: \[ t = \frac{3y - 1}{y - 3} \] 8. **Since \(t = \tan^2 x\), we know \(t \geq 0\)**: Therefore, we set up the inequality: \[ \frac{3y - 1}{y - 3} \geq 0 \] 9. **Determine the critical points**: The critical points occur when the numerator and denominator are zero: - \(3y - 1 = 0 \Rightarrow y = \frac{1}{3}\) - \(y - 3 = 0 \Rightarrow y = 3\) 10. **Test intervals**: We will test the intervals determined by the critical points: - For \(y < \frac{1}{3}\): Both \(3y - 1 < 0\) and \(y - 3 < 0\) → Positive - For \(\frac{1}{3} < y < 3\): \(3y - 1 > 0\) and \(y - 3 < 0\) → Negative - For \(y > 3\): Both \(3y - 1 > 0\) and \(y - 3 > 0\) → Positive 11. **Conclusion on the range of \(y\)**: Thus, the solution to the inequality shows that: \[ y \in (-\infty, \frac{1}{3}) \cup (3, \infty) \] Therefore, \(y\) does not belong to the intervals \(\left[\frac{1}{3}, 3\right]\). ### Final Answer: The range of \(y\) is: \[ y \in (-\infty, \frac{1}{3}) \cup (3, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

y=x^(tanx)

If tan(cotx)=cot(tanx), then sin2x is equal to

If tan(cotx)=cot(tanx) , then sin2x is equal to

If y=(tanx)^((tanx)^((tanx).... ∞) ,then find (dy)/(dx) at x=pi/4

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

Prove that (tan3x)/(tanx) never lies between 1/3a n d3 .

if Delta (x) = |{:(tan x,,tan (x+h),,tan(x+2h)),(tan(x+2h),,tan x,,tan(x+h)),(tan(x+h),,tan(x+2h),,tanx):}|, " then " The value of lim_(h to 0) .((Delta (pi//3))/((sqrt(3))h^(2))) " is "

If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pi and tan^2x+tan^2y+tan^2z is

If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia n dtan^2x+tan^2y+tan^2z=(38)/Kt h a nK=_________

The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x) ____________

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  2. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  3. If y=(tanx)/(tan3x), then

    Text Solution

    |

  4. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  5. The value of sin""(pi)/(7)+sin""(2pi)/(7)+sin""(3pi)/(7), is

    Text Solution

    |

  6. Prove that sin. (2pi)/(7)+sin.(4pi)/(7)+sin. (8pi)/(7)=(sqrt(7))/(2).

    Text Solution

    |

  7. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  8. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  9. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  10. If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  11. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  12. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  13. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  14. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  15. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  16. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  17. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  18. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  19. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |

  20. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |