Home
Class 12
MATHS
The value of cot^(2)""(pi)/(7)+cot^(2)""...

The value of `cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7),` is

A

0

B

5

C

9

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right) \), we can use the following steps: ### Step 1: Use the identity for cotangent We know that: \[ \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \] Thus, we can rewrite the expression as: \[ \cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right) = \frac{\cos^2\left(\frac{\pi}{7}\right)}{\sin^2\left(\frac{\pi}{7}\right)} + \frac{\cos^2\left(\frac{2\pi}{7}\right)}{\sin^2\left(\frac{2\pi}{7}\right)} + \frac{\cos^2\left(\frac{3\pi}{7}\right)}{\sin^2\left(\frac{3\pi}{7}\right)} \] ### Step 2: Convert cotangent to sine and cosine Using the identity \( \cot^2 \theta + 1 = \csc^2 \theta \), we can express cotangent in terms of cosecant: \[ \cot^2 \theta = \csc^2 \theta - 1 \] Thus: \[ \cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right) = \left(\csc^2\left(\frac{\pi}{7}\right) - 1\right) + \left(\csc^2\left(\frac{2\pi}{7}\right) - 1\right) + \left(\csc^2\left(\frac{3\pi}{7}\right) - 1\right) \] This simplifies to: \[ \csc^2\left(\frac{\pi}{7}\right) + \csc^2\left(\frac{2\pi}{7}\right) + \csc^2\left(\frac{3\pi}{7}\right) - 3 \] ### Step 3: Find the sum of cosecant squares Using the identity: \[ \csc^2 x = 1 + \cot^2 x \] We can find the values of \( \csc^2\left(\frac{\pi}{7}\right) \), \( \csc^2\left(\frac{2\pi}{7}\right) \), and \( \csc^2\left(\frac{3\pi}{7}\right) \). ### Step 4: Use the known result It is known that: \[ \cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right) = 7 \] ### Final Result Thus, the value of \( \cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right) \) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)/(7), is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

The value of cot^(pi)/(4)-2 cot^(-13) is

The value of 2"sin"^(2)(pi)/(6)+"cosec"^(2)(7pi)/(6)."cos"^(2)(pi)/(3) is equal to

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

The value of tan(pi+x)tan(pi-x)cot^(2)x is

Find the value of 2cos^3(pi/7)-cos^2(pi/7)-cos(pi/7)

The value of cot((7pi)/16)+2cot((3pi)/8)+cot((15pi)/16) is (a) 4 (b) 2 (c) -2 (d) -4

If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=-l/2 Find the value of l

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  2. If y=(tanx)/(tan3x), then

    Text Solution

    |

  3. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  4. The value of sin""(pi)/(7)+sin""(2pi)/(7)+sin""(3pi)/(7), is

    Text Solution

    |

  5. Prove that sin. (2pi)/(7)+sin.(4pi)/(7)+sin. (8pi)/(7)=(sqrt(7))/(2).

    Text Solution

    |

  6. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  7. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  8. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  9. If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  10. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  11. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  12. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  13. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  14. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  15. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  16. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  17. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  18. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |

  19. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  20. Find the minimum value of 9tan^2theta+4cot^2theta

    Text Solution

    |