Home
Class 12
MATHS
If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)...

If 0`ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=`

A

`(sqrt7-2)/(3)`

B

`(sqrt7+2)/(3)`

C

`(sqrt7)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to find the value of \( \tan\left(\frac{A}{2}\right) \) given that \( \sin A + \cos A = \frac{\sqrt{7}}{2} \) and \( 0 < A < \frac{\pi}{6} \). ### Step 1: Write the given equation We start with the equation: \[ \sin A + \cos A = \frac{\sqrt{7}}{2} \] ### Step 2: Use the identity for sine and cosine We can express \( \sin A \) and \( \cos A \) in terms of \( \tan\left(\frac{A}{2}\right) \): \[ \sin A = \frac{2 \tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} \] \[ \cos A = \frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} \] ### Step 3: Substitute into the equation Substituting these identities into the equation gives: \[ \frac{2 \tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} + \frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} = \frac{\sqrt{7}}{2} \] ### Step 4: Combine the fractions Combining the fractions on the left side: \[ \frac{2 \tan\left(\frac{A}{2}\right) + 1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} = \frac{\sqrt{7}}{2} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 2(2 \tan\left(\frac{A}{2}\right) + 1 - \tan^2\left(\frac{A}{2}\right)) = \sqrt{7}(1 + \tan^2\left(\frac{A}{2}\right)) \] ### Step 6: Rearranging the equation Expanding and rearranging: \[ 4 \tan\left(\frac{A}{2}\right) + 2 - 2 \tan^2\left(\frac{A}{2}\right) = \sqrt{7} + \sqrt{7} \tan^2\left(\frac{A}{2}\right) \] \[ (2 + \sqrt{7}) \tan^2\left(\frac{A}{2}\right) - 4 \tan\left(\frac{A}{2}\right) + (\sqrt{7} - 2) = 0 \] ### Step 7: Identify coefficients for the quadratic formula Let \( x = \tan\left(\frac{A}{2}\right) \). The equation becomes: \[ (2 + \sqrt{7})x^2 - 4x + (\sqrt{7} - 2) = 0 \] Here, \( a = 2 + \sqrt{7} \), \( b = -4 \), and \( c = \sqrt{7} - 2 \). ### Step 8: Use the quadratic formula Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values: \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4(2 + \sqrt{7})(\sqrt{7} - 2)}}{2(2 + \sqrt{7})} \] Calculating the discriminant: \[ 16 - 4(2 + \sqrt{7})(\sqrt{7} - 2) \] ### Step 9: Simplify the discriminant Calculating: \[ = 16 - 4[(2\sqrt{7} - 4) + (7 - 2\sqrt{7})] = 16 - 4(3) = 4 \] So, \[ x = \frac{4 \pm 2}{2(2 + \sqrt{7})} \] ### Step 10: Find the two possible values Calculating the two values: 1. \( x = \frac{6}{2(2 + \sqrt{7})} = \frac{3}{2 + \sqrt{7}} \) 2. \( x = \frac{2}{2(2 + \sqrt{7})} = \frac{1}{2 + \sqrt{7}} \) ### Step 11: Rationalize the denominators For \( x = \frac{3}{2 + \sqrt{7}} \): \[ = \frac{3(2 - \sqrt{7})}{(2 + \sqrt{7})(2 - \sqrt{7})} = \frac{6 - 3\sqrt{7}}{-3} = \sqrt{7} - 2 \] For \( x = \frac{1}{2 + \sqrt{7}} \): \[ = \frac{(2 - \sqrt{7})}{(2 + \sqrt{7})(2 - \sqrt{7})} = \frac{2 - \sqrt{7}}{-3} \] ### Final Result Thus, the possible values for \( \tan\left(\frac{A}{2}\right) \) are: 1. \( \tan\left(\frac{A}{2}\right) = \sqrt{7} - 2 \) 2. \( \tan\left(\frac{A}{2}\right) = \frac{2 - \sqrt{7}}{3} \) Since \( 0 < A < \frac{\pi}{6} \), we take the positive value: \[ \tan\left(\frac{A}{2}\right) = \frac{\sqrt{7} - 2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

If (sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt A, B lt (pi)/(2) then tanA+tanB is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If 0 lt A lt pi//2 and sinA + cosA + tan A + cotA + secA + cosec A=7 and sinA and cosA are roots of equation 4x^(2) - 3x +a=0 . Then value of 25a is:

Prove that: (1+sinA-cosA)/(1+sinA+cosA) = tan(A/2)

Prove that: (1+sinA-cosA)/(1+sinA+cosA)=tan(A/2)

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

If sinA = -5/13 and pi lt A lt (3pi)/(2) , find the values of the following: i) sin(A/2) , ii) cos(A/2) , iii) tan(A/2)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  2. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  3. If 0ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  4. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  5. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  6. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  7. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  8. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  9. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  10. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  11. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  12. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |

  13. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  14. Find the minimum value of 9tan^2theta+4cot^2theta

    Text Solution

    |

  15. If x(1),x(2),x(3),...,x(n) are in A.P. whose common difference is alph...

    Text Solution

    |

  16. If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=.....

    Text Solution

    |

  17. If a(r+1)=sqrt(1/2 ( 1+a(r))), the prove that cos((sqrt(1-a(0)^(2))...

    Text Solution

    |

  18. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  19. The value of cos y cos (pi/2-x)-cos (pi/2 - y) cos x + sin y cos (pi/2...

    Text Solution

    |

  20. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |