Home
Class 12
MATHS
For x in R, tanx+1/2tan""(x)/(2)+1/((2...

For `x in R,`
`tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(2^(n-1))tan""((x)/(2^(n-1)))` is equal to

A

a. `2cot2x-(1)/(2^(n-1))cos""((x)/(2^(n-1)))`

B

b. `(1)/(2^(n-1))cot""((x)/(2^(n-1)))-2cot2x`

C

c. `cot""((x)/(2^(n-1)))-cot2x`

D

d. none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series given by: \[ S = \tan x + \frac{1}{2} \tan \left( \frac{x}{2} \right) + \frac{1}{2^2} \tan \left( \frac{x}{2^2} \right) + \ldots + \frac{1}{2^{n-1}} \tan \left( \frac{x}{2^{n-1}} \right) \] This series can be expressed as: \[ S = \sum_{k=0}^{n-1} \frac{1}{2^k} \tan \left( \frac{x}{2^k} \right) \] ### Step 1: Recognize the pattern in the series The series involves terms of the form \(\tan\left(\frac{x}{2^k}\right)\) multiplied by \(\frac{1}{2^k}\). **Hint:** Look for a way to express the tangent function in terms of cotangent to simplify the series. ### Step 2: Use the identity for tangent Recall the identity: \[ \tan A = \frac{\sin A}{\cos A} \] We can rewrite each term in the series using this identity. ### Step 3: Rewrite the series Using the identity, we can express the series as: \[ S = \sum_{k=0}^{n-1} \frac{\sin\left(\frac{x}{2^k}\right)}{\cos\left(\frac{x}{2^k}\right) \cdot 2^k} \] **Hint:** Consider how to combine these terms or look for a telescoping series. ### Step 4: Consider the limit as \(n\) approaches infinity As \(n\) approaches infinity, we can analyze the behavior of the series. The series converges to a certain value. **Hint:** Think about the behavior of \(\tan\) and \(\cot\) functions as the angle approaches zero. ### Step 5: Use the formula for the sum of a geometric series The series can be related to a geometric series. The sum of a geometric series can be expressed as: \[ \text{Sum} = \frac{a}{1 - r} \] where \(a\) is the first term and \(r\) is the common ratio. ### Step 6: Final expression After manipulating the series and applying the limit, we find that: \[ S = \frac{\tan x}{1 - \frac{1}{2}} = 2 \tan x \] Thus, the final answer is: \[ S = 2 \tan x \] ### Conclusion The value of the series is \(2 \tan x\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

Prove the following by the principle of mathematical induction: 1/2tan(x/2)+1/4tan(x/4)+...+(1/2^n)tan(x/(2^n))=(1/2^n)cot(x/(2^n)) - cot x for all n belongs to N.

cosec^(-1)((1+tan ^2x)/(2tanx))

The solution of (dy)/(dx)=((x-1)^2+(y-2)^2tan^(- 1)((y-2)/(x-1)))/((x y-2x-y+2)tan^(- 1)((y-2)/(x-1))) is equal to

tan^(-1)[(C_(1)x-y)/(c_(1)y+x)]+tan^(-1)[(C_(2)-C_(1))/(1+C_(1)C_(2))]..+tan^(-1)[(1)/(c_(n))] is equal to

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx equals to

int(x^2+2)/(x^4+4)dx is equal to (a) 1/2tan^(-1)((x^2-2)/(2x))+c (b) 1/2tan^(-1)((2x)/(x^2+2))+c (c) 1/2tan^(-1)((2x)/(x^2-2))+c (d) 1/2tan^(-1)(x^2+2)+c

If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n) , then 'n' is equal to :

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  2. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  3. For x in R, tanx+1/2tan""(x)/(2)+1/((2^2))tan""(x)/(2^(2))+...+(1)/(...

    Text Solution

    |

  4. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  5. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  6. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  7. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  8. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |

  9. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  10. Find the minimum value of 9tan^2theta+4cot^2theta

    Text Solution

    |

  11. If x(1),x(2),x(3),...,x(n) are in A.P. whose common difference is alph...

    Text Solution

    |

  12. If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=.....

    Text Solution

    |

  13. If a(r+1)=sqrt(1/2 ( 1+a(r))), the prove that cos((sqrt(1-a(0)^(2))...

    Text Solution

    |

  14. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  15. The value of cos y cos (pi/2-x)-cos (pi/2 - y) cos x + sin y cos (pi/2...

    Text Solution

    |

  16. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  17. The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(...

    Text Solution

    |

  18. If sin alpha -cos alpha = m, then the value of sin^6alpha+cos^6alpha i...

    Text Solution

    |

  19. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  20. If cos(A-B)=3/5 and tan A tan B=2, then (a) cos Acos B=1/5 (b) sin A ...

    Text Solution

    |