Home
Class 12
MATHS
If cosA=tanB, cos B=tanC, cosC=tanA, the...

If `cosA=tanB, cos B=tanC, cosC=tanA,` then sin A is equal to

A

`sin 180^(@)`

B

`2sin18^(@)`

C

`2cos18^(@)`

D

`2 cos36^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos A = \tan B \), \( \cos B = \tan C \), and \( \cos C = \tan A \), we need to find the value of \( \sin A \). ### Step-by-Step Solution: 1. **Start with the given equations**: \[ \cos A = \tan B, \quad \cos B = \tan C, \quad \cos C = \tan A \] 2. **Express tangent in terms of sine and cosine**: Recall that \( \tan B = \frac{\sin B}{\cos B} \). Therefore, we can rewrite the first equation: \[ \cos A = \frac{\sin B}{\cos B} \] Cross-multiplying gives: \[ \cos A \cdot \cos B = \sin B \] 3. **Square both sides**: \[ \cos^2 A \cdot \cos^2 B = \sin^2 B \] 4. **Use the Pythagorean identity**: We know that \( \sin^2 B + \cos^2 B = 1 \). Thus, we can express \( \cos^2 B \) as: \[ \cos^2 B = 1 - \sin^2 B \] Substituting this into our squared equation gives: \[ \cos^2 A \cdot (1 - \sin^2 B) = \sin^2 B \] 5. **Let \( \sin A = x \), \( \sin B = y \), and \( \sin C = z \)**: We can rewrite the equation as: \[ \cos^2 A \cdot (1 - y^2) = y^2 \] 6. **Express \( \cos^2 A \) in terms of \( x \)**: Using \( \cos^2 A = 1 - x^2 \), we substitute: \[ (1 - x^2)(1 - y^2) = y^2 \] 7. **Expand and rearrange**: Expanding gives: \[ 1 - y^2 - x^2 + x^2y^2 = y^2 \] Rearranging leads to: \[ x^2y^2 - 2y^2 + 1 - x^2 = 0 \] This can be rewritten as: \[ x^2y^2 - 2y^2 + 1 = x^2 \] 8. **Repeat the process for \( \cos B \) and \( \cos C \)**: We can derive similar equations for \( y^2 \) and \( z^2 \) using the relationships \( \cos B = \tan C \) and \( \cos C = \tan A \). 9. **Substituting and solving**: After deriving the equations, we will have a system of equations involving \( x^2, y^2, z^2 \). 10. **Final substitution**: After solving the system, we find: \[ \sin^2 A = \frac{3 - \sqrt{5}}{2} \] Therefore, taking the positive square root (since sine is positive in the first quadrant): \[ \sin A = \sqrt{\frac{3 - \sqrt{5}}{2}} \] ### Final Answer: \[ \sin A = \frac{\sqrt{5} - 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If cosA+cosB+cosC=0, then cos3A+cos3B+cos3C is equal to

tanA +tanB + tanC = tanA tanB tanC if

if (secA+tanA)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB) (secC-tanC) Prove that each of the side is equal to +-1.

If sinA, cosA and tanA are in G.P, the cos^(3)A+cos^(2)A is equal to :

If tanA=(1)/(2) and tanB=(1)/(3) , then tan(2A+B) is equal to

If cos(A-B)=3/5 and tanA tanB=2, then a.cos A cosB=1/5 b. cosA cos B= -1/5 c. sin A sin B= -1/5 d. sin A sin B= -1/5

If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A tan B tanC is

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then the respective values of tan A, tan B and tanC are

If tanA+tanB+tanC=tanAtanBtanC then

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  2. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  3. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  4. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  5. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |

  6. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  7. Find the minimum value of 9tan^2theta+4cot^2theta

    Text Solution

    |

  8. If x(1),x(2),x(3),...,x(n) are in A.P. whose common difference is alph...

    Text Solution

    |

  9. If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=.....

    Text Solution

    |

  10. If a(r+1)=sqrt(1/2 ( 1+a(r))), the prove that cos((sqrt(1-a(0)^(2))...

    Text Solution

    |

  11. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  12. The value of cos y cos (pi/2-x)-cos (pi/2 - y) cos x + sin y cos (pi/2...

    Text Solution

    |

  13. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  14. The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(...

    Text Solution

    |

  15. If sin alpha -cos alpha = m, then the value of sin^6alpha+cos^6alpha i...

    Text Solution

    |

  16. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  17. If cos(A-B)=3/5 and tan A tan B=2, then (a) cos Acos B=1/5 (b) sin A ...

    Text Solution

    |

  18. The value of (3+cot76^@cot16^@)/(cot76^@+cot16^@) is

    Text Solution

    |

  19. If sin x+sin^(2)x=1, " then " cos^(8)x+2 cos^(6)x+cos^(4)x=

    Text Solution

    |

  20. If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c...

    Text Solution

    |