Home
Class 12
MATHS
If x(1),x(2),x(3),...,x(n) are in A.P. w...

If `x_(1),x_(2),x_(3),...,x_(n)` are in A.P. whose common difference is `alpha,` then the value of `sinalpha(secx_(1)secx_(2)+secx_(2)secx_(3)+...+secx_(n-1)secx_(n))`is

A

`(sin(n-1)alpha)/(cosx_(1)cosx_(n))`

B

`(sinn alpha)/(cosx_(1)cosx_(n))`

C

`sin(n-1)alphacosx_(1)cosx_(n)`

D

`sinn alphacosx_(1)cosx_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \sin \alpha \left( \sec x_1 \sec x_2 + \sec x_2 \sec x_3 + \ldots + \sec x_{n-1} \sec x_n \right) \] where \( x_1, x_2, \ldots, x_n \) are in arithmetic progression (A.P.) with a common difference \( \alpha \). ### Step 1: Express the terms in the sum using cosine Recall that \[ \sec x = \frac{1}{\cos x} \] Thus, we can rewrite the expression as: \[ \sin \alpha \left( \frac{1}{\cos x_1 \cos x_2} + \frac{1}{\cos x_2 \cos x_3} + \ldots + \frac{1}{\cos x_{n-1} \cos x_n} \right) \] ### Step 2: Factor out \(\sin \alpha\) This gives us: \[ \sin \alpha \left( \frac{1}{\cos x_1 \cos x_2} + \frac{1}{\cos x_2 \cos x_3} + \ldots + \frac{1}{\cos x_{n-1} \cos x_n} \right) \] ### Step 3: Use the sine difference identity We know that the common difference \( \alpha \) can be expressed in terms of the angles. For two angles \( x_i \) and \( x_{i+1} \): \[ \sin(x_{i+1} - x_i) = \sin \alpha = \sin(x_i + \alpha - x_i) = \sin x_i \cos \alpha - \cos x_i \sin \alpha \] ### Step 4: Apply the sine difference formula Using the sine difference formula, we can express each term in the sum as: \[ \sin(x_{i+1}) \cos x_i - \cos(x_{i+1}) \sin x_i \] ### Step 5: Sum the series Now, summing these terms: \[ \sum_{i=1}^{n-1} \left( \sin(x_{i+1}) \cos x_i - \cos(x_{i+1}) \sin x_i \right) \] This results in a telescoping series, where most terms will cancel out. ### Step 6: Simplify the result After cancellation, we are left with: \[ \sin x_n - \sin x_1 \] ### Step 7: Final expression Thus, we can express our original expression as: \[ \sin \alpha \cdot \frac{\sin(x_n) - \sin(x_1)}{\cos x_1 \cos x_n} \] ### Step 8: Substitute \( x_n \) Since \( x_n = x_1 + (n-1)\alpha \), we can substitute this into our expression: \[ \sin \alpha \cdot \frac{\sin(x_1 + (n-1)\alpha) - \sin x_1}{\cos x_1 \cos(x_1 + (n-1)\alpha)} \] ### Step 9: Final simplification Using the sine difference identity: \[ \sin(x_n - x_1) = \sin((n-1)\alpha) \] Thus, we have: \[ \sin(n-1)\alpha \cdot \frac{1}{\cos x_1 \cos x_n} \] ### Conclusion The final result is: \[ \frac{\sin(n-1)\alpha}{\cos x_1 \cos x_n} \] ### Final Answer The value of \[ \sin \alpha \left( \sec x_1 \sec x_2 + \sec x_2 \sec x_3 + \ldots + \sec x_{n-1} \sec x_n \right) = \frac{\sin(n-1)\alpha}{\cos x_1 \cos x_n} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

intdx/(1+secx)

int((2+secx)secx)/((1+2secx)^2)dx=

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to

Evaluate: int(secx)/(sec2x)dx

The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

intsqrt(secx+1)dx

The value of cos(pi+x)sin(pi-x) secx.coses x is

The value of lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

Evaluate: intsqrt(secx-1)dx

The value of the integral int(xsin x^(2)e^(secx^(2)))/(cos^(2)x^(2))dx , is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  2. Find the minimum value of 9tan^2theta+4cot^2theta

    Text Solution

    |

  3. If x(1),x(2),x(3),...,x(n) are in A.P. whose common difference is alph...

    Text Solution

    |

  4. If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=.....

    Text Solution

    |

  5. If a(r+1)=sqrt(1/2 ( 1+a(r))), the prove that cos((sqrt(1-a(0)^(2))...

    Text Solution

    |

  6. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  7. The value of cos y cos (pi/2-x)-cos (pi/2 - y) cos x + sin y cos (pi/2...

    Text Solution

    |

  8. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  9. The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(...

    Text Solution

    |

  10. If sin alpha -cos alpha = m, then the value of sin^6alpha+cos^6alpha i...

    Text Solution

    |

  11. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  12. If cos(A-B)=3/5 and tan A tan B=2, then (a) cos Acos B=1/5 (b) sin A ...

    Text Solution

    |

  13. The value of (3+cot76^@cot16^@)/(cot76^@+cot16^@) is

    Text Solution

    |

  14. If sin x+sin^(2)x=1, " then " cos^(8)x+2 cos^(6)x+cos^(4)x=

    Text Solution

    |

  15. If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c...

    Text Solution

    |

  16. If sinα.sinβ−cosα.cosβ+1=0 then show that 1+cotα.tanβ=0

    Text Solution

    |

  17. If sintheta(1)+sintheta(2)+sintheta(3)=3, then cos theta(1)+cos theta(...

    Text Solution

    |

  18. If A lies in the third quadrant and 3 tan A-4 = 0, then 5 sin 2A + 3si...

    Text Solution

    |

  19. tan 5x tan3x tan2x=

    Text Solution

    |

  20. The value of sin12^(@)sin24^(@)sin48^(@)sin84^(@), is

    Text Solution

    |