Home
Class 12
MATHS
If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d a...

If `asin^2x+bcos^2x=c,bsin^2y+acos^2y=d` and `atanx=btany` then `a^2/b^2=........ (0ltx,yltpi/ 2)`

A

`((b-c)(d-b))/((a-d)(d-b))`

B

`((a-d)(c-a))/((b-c)(d-b))`

C

`((d-a)(c-a))/((b-c)(d-b))`

D

`((b-c)(b-d))/((a-c)(a-d))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{a^2}{b^2} \) given the equations: 1. \( a \sin^2 x + b \cos^2 x = c \) 2. \( b \sin^2 y + a \cos^2 y = d \) 3. \( a \tan x = b \tan y \) ### Step 1: Express \( \frac{a}{b} \) in terms of \( \tan x \) and \( \tan y \) From the third equation \( a \tan x = b \tan y \), we can rearrange it to get: \[ \frac{a}{b} = \frac{\tan y}{\tan x} \] ### Step 2: Square both sides to find \( \frac{a^2}{b^2} \) Squaring both sides gives us: \[ \frac{a^2}{b^2} = \frac{\tan^2 y}{\tan^2 x} \] ### Step 3: Find \( \tan^2 x \) Using the first equation \( a \sin^2 x + b \cos^2 x = c \), we can divide the entire equation by \( \cos^2 x \): \[ a \tan^2 x + b = c \sec^2 x \] Since \( \sec^2 x = 1 + \tan^2 x \), we can rewrite this as: \[ a \tan^2 x + b = c + c \tan^2 x \] Rearranging gives: \[ a \tan^2 x - c \tan^2 x = c - b \] Factoring out \( \tan^2 x \): \[ \tan^2 x (a - c) = c - b \] Thus, we find: \[ \tan^2 x = \frac{c - b}{a - c} \] ### Step 4: Find \( \tan^2 y \) Using the second equation \( b \sin^2 y + a \cos^2 y = d \), we divide by \( \cos^2 y \): \[ b \tan^2 y + a = d \sec^2 y \] Again, using \( \sec^2 y = 1 + \tan^2 y \): \[ b \tan^2 y + a = d + d \tan^2 y \] Rearranging gives: \[ b \tan^2 y - d \tan^2 y = d - a \] Factoring out \( \tan^2 y \): \[ \tan^2 y (b - d) = d - a \] Thus, we find: \[ \tan^2 y = \frac{d - a}{b - d} \] ### Step 5: Substitute \( \tan^2 x \) and \( \tan^2 y \) into \( \frac{a^2}{b^2} \) Now substituting these values into \( \frac{a^2}{b^2} \): \[ \frac{a^2}{b^2} = \frac{\tan^2 y}{\tan^2 x} = \frac{\frac{d - a}{b - d}}{\frac{c - b}{a - c}} \] This simplifies to: \[ \frac{a^2}{b^2} = \frac{(d - a)(a - c)}{(b - d)(c - b)} \] ### Final Result Thus, the value of \( \frac{a^2}{b^2} \) is: \[ \frac{a^2}{b^2} = \frac{(d - a)(a - c)}{(b - d)(c - b)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d,and atanx=btany , then prove that a^2/b^2=((d-a)(c-a))/((b-c)(b-d)) .

int sin(2x)/(acos^2x+bsin^2x) dx=

If asin^2theta+bcos^2theta=m, bsin^2phi+acos^2phi=n, atantheta=btanphi , then which of the following is true?

Evaluate: int(sin2x)/(acos^2x+bsin^2x)dx

Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B

If asin^(2)theta+bcos^(2)theta=c , then prove that tan^(2)theta=(c-b)/(a-c)

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

If a!=0 and the line 2b x+3c y+4d=0 passes through the points of intersection of the parabolas y^2=4a x and x^2=4a y , then (a) d^2+(2b+3c)^2=0 (b) d^2+(3b+2c)^2=0 (c) d^2+(2b-3c)^2=0 (d)none of these

If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(dx^2) at theta=pi/6dot

If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(dx^2) at theta=pi/6dot

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. Find the minimum value of 9tan^2theta+4cot^2theta

    Text Solution

    |

  2. If x(1),x(2),x(3),...,x(n) are in A.P. whose common difference is alph...

    Text Solution

    |

  3. If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=.....

    Text Solution

    |

  4. If a(r+1)=sqrt(1/2 ( 1+a(r))), the prove that cos((sqrt(1-a(0)^(2))...

    Text Solution

    |

  5. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  6. The value of cos y cos (pi/2-x)-cos (pi/2 - y) cos x + sin y cos (pi/2...

    Text Solution

    |

  7. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  8. The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(...

    Text Solution

    |

  9. If sin alpha -cos alpha = m, then the value of sin^6alpha+cos^6alpha i...

    Text Solution

    |

  10. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  11. If cos(A-B)=3/5 and tan A tan B=2, then (a) cos Acos B=1/5 (b) sin A ...

    Text Solution

    |

  12. The value of (3+cot76^@cot16^@)/(cot76^@+cot16^@) is

    Text Solution

    |

  13. If sin x+sin^(2)x=1, " then " cos^(8)x+2 cos^(6)x+cos^(4)x=

    Text Solution

    |

  14. If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c...

    Text Solution

    |

  15. If sinα.sinβ−cosα.cosβ+1=0 then show that 1+cotα.tanβ=0

    Text Solution

    |

  16. If sintheta(1)+sintheta(2)+sintheta(3)=3, then cos theta(1)+cos theta(...

    Text Solution

    |

  17. If A lies in the third quadrant and 3 tan A-4 = 0, then 5 sin 2A + 3si...

    Text Solution

    |

  18. tan 5x tan3x tan2x=

    Text Solution

    |

  19. The value of sin12^(@)sin24^(@)sin48^(@)sin84^(@), is

    Text Solution

    |

  20. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |