Home
Class 12
MATHS
If sin alpha -cos alpha = m, then the va...

If `sin alpha -cos alpha = m`, then the value of `sin^6alpha+cos^6alpha` in terms of m is

A

`(4-3(m^(2)-1)^(2))/(4)`

B

`(4+3(m^(2)-1)^(2))/(4)`

C

`(3+4(m^(2)-1)^(2))/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^6 \alpha + \cos^6 \alpha \) in terms of \( m \) where \( \sin \alpha - \cos \alpha = m \), we will follow these steps: ### Step 1: Use the identity for \( \sin^6 \alpha + \cos^6 \alpha \) We can express \( \sin^6 \alpha + \cos^6 \alpha \) using the identity for the sum of cubes: \[ \sin^6 \alpha + \cos^6 \alpha = (\sin^2 \alpha + \cos^2 \alpha)(\sin^4 \alpha + \cos^4 \alpha - \sin^2 \alpha \cos^2 \alpha) \] Since \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we have: \[ \sin^6 \alpha + \cos^6 \alpha = \sin^4 \alpha + \cos^4 \alpha - \sin^2 \alpha \cos^2 \alpha \] ### Step 2: Find \( \sin^4 \alpha + \cos^4 \alpha \) We can use the identity for \( a^4 + b^4 \): \[ \sin^4 \alpha + \cos^4 \alpha = (\sin^2 \alpha + \cos^2 \alpha)^2 - 2\sin^2 \alpha \cos^2 \alpha \] Substituting \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \sin^4 \alpha + \cos^4 \alpha = 1 - 2\sin^2 \alpha \cos^2 \alpha \] ### Step 3: Substitute back into the equation Now substituting this back into our expression for \( \sin^6 \alpha + \cos^6 \alpha \): \[ \sin^6 \alpha + \cos^6 \alpha = (1 - 2\sin^2 \alpha \cos^2 \alpha) - \sin^2 \alpha \cos^2 \alpha \] This simplifies to: \[ \sin^6 \alpha + \cos^6 \alpha = 1 - 3\sin^2 \alpha \cos^2 \alpha \] ### Step 4: Find \( \sin^2 \alpha \cos^2 \alpha \) in terms of \( m \) From the given equation \( \sin \alpha - \cos \alpha = m \), we square both sides: \[ \sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha = m^2 \] Using \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ 1 - 2\sin \alpha \cos \alpha = m^2 \] Thus, we can express \( \sin \alpha \cos \alpha \): \[ \sin \alpha \cos \alpha = \frac{1 - m^2}{2} \] Now squaring this gives: \[ \sin^2 \alpha \cos^2 \alpha = \left(\frac{1 - m^2}{2}\right)^2 = \frac{(1 - m^2)^2}{4} \] ### Step 5: Substitute \( \sin^2 \alpha \cos^2 \alpha \) back into the equation Substituting this back into our equation for \( \sin^6 \alpha + \cos^6 \alpha \): \[ \sin^6 \alpha + \cos^6 \alpha = 1 - 3\left(\frac{(1 - m^2)^2}{4}\right) \] This simplifies to: \[ \sin^6 \alpha + \cos^6 \alpha = 1 - \frac{3(1 - m^2)^2}{4} \] Expanding this gives: \[ \sin^6 \alpha + \cos^6 \alpha = 1 - \frac{3(1 - 2m^2 + m^4)}{4} \] \[ = 1 - \frac{3 - 6m^2 + 3m^4}{4} = \frac{4 - 3 + 6m^2 - 3m^4}{4} = \frac{1 + 6m^2 - 3m^4}{4} \] ### Final Result Thus, we have: \[ \sin^6 \alpha + \cos^6 \alpha = \frac{4 - 3(1 - m^2)^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8 sec^4 alpha-75 is

If 10sin^4alpha+15cos^4alpha=6 , find the value of 27cos e c^6alpha+8s e c^6alpha .

Show that : sin^6 alpha+ cos^6 alpha ge 1/4

If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 alpha+8sec^6 alpha.

If 15 sin^(4)alpha+10cos^(4)alpha=6 , then the value of 8 cosec^(6)alpha+27 sec^(6)alpha is

If alpha = 112^(@) 30' , find the value of sin alpha and cos alpha

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2) , then the value of sqrt3 sin alpha+cos alpha is equal to

If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6 , then find the value of 27 sin^(8)alpha + 8 cos^(8) alpha

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  2. The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(...

    Text Solution

    |

  3. If sin alpha -cos alpha = m, then the value of sin^6alpha+cos^6alpha i...

    Text Solution

    |

  4. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  5. If cos(A-B)=3/5 and tan A tan B=2, then (a) cos Acos B=1/5 (b) sin A ...

    Text Solution

    |

  6. The value of (3+cot76^@cot16^@)/(cot76^@+cot16^@) is

    Text Solution

    |

  7. If sin x+sin^(2)x=1, " then " cos^(8)x+2 cos^(6)x+cos^(4)x=

    Text Solution

    |

  8. If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c...

    Text Solution

    |

  9. If sinα.sinβ−cosα.cosβ+1=0 then show that 1+cotα.tanβ=0

    Text Solution

    |

  10. If sintheta(1)+sintheta(2)+sintheta(3)=3, then cos theta(1)+cos theta(...

    Text Solution

    |

  11. If A lies in the third quadrant and 3 tan A-4 = 0, then 5 sin 2A + 3si...

    Text Solution

    |

  12. tan 5x tan3x tan2x=

    Text Solution

    |

  13. The value of sin12^(@)sin24^(@)sin48^(@)sin84^(@), is

    Text Solution

    |

  14. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  15. If A+C=B,then tanA tanBtanC=

    Text Solution

    |

  16. If tan(cotx)=cot(tanx), then sin2x is equal to

    Text Solution

    |

  17. If tan theta=a/b then b cos 2theta+asin 2theta=

    Text Solution

    |

  18. If A=130^(@)and x=sinA+cosA, then

    Text Solution

    |

  19. The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

    Text Solution

    |

  20. If A=sin^(2)theta+cos^(4)theta, then find all real values of theta.

    Text Solution

    |