Home
Class 12
MATHS
If tan(cotx)=cot(tanx), then sin2x is eq...

If `tan(cotx)=cot(tanx), then sin2x` is equal to

A

`(2)/((2n+1)pi)`

B

`(4)/((2n+1)pi)`

C

`(2)/(n(n+1)pi)`

D

`(4)/(n(n+1)pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\cot x) = \cot(\tan x) \) and find the value of \( \sin 2x \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \tan(\cot x) = \cot(\tan x) \] ### Step 2: Use the cotangent identity Recall that: \[ \cot \theta = \tan\left(\frac{\pi}{2} - \theta\right) \] Thus, we can rewrite \( \cot(\tan x) \) as: \[ \cot(\tan x) = \tan\left(\frac{\pi}{2} - \tan x\right) \] So, we have: \[ \tan(\cot x) = \tan\left(\frac{\pi}{2} - \tan x\right) \] ### Step 3: Set the angles equal Since \( \tan A = \tan B \) implies: \[ A = n\pi + B \quad \text{for some integer } n \] We can set: \[ \cot x = n\pi + \left(\frac{\pi}{2} - \tan x\right) \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \cot x + \tan x = n\pi + \frac{\pi}{2} \] ### Step 5: Convert to sine and cosine Using the identities \( \cot x = \frac{\cos x}{\sin x} \) and \( \tan x = \frac{\sin x}{\cos x} \), we can rewrite the equation: \[ \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = n\pi + \frac{\pi}{2} \] Combining the fractions: \[ \frac{\cos^2 x + \sin^2 x}{\sin x \cos x} = n\pi + \frac{\pi}{2} \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ \frac{1}{\sin x \cos x} = n\pi + \frac{\pi}{2} \] ### Step 6: Solve for \( \sin 2x \) Recall that: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can express \( \sin 2x \) in terms of the previous equation: \[ \sin 2x = \frac{2}{n\pi + \frac{\pi}{2}} \] ### Step 7: Final expression for \( \sin 2x \) To simplify: \[ \sin 2x = \frac{4}{2n + 1}\pi \] ### Conclusion Thus, the final answer for \( \sin 2x \) is: \[ \sin 2x = \frac{4}{(2n + 1)\pi} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to

If tan (cot x) = cot (tan x) , prove that : sin 2x = 4/((2n+1) pi)

int(cos4x-1)/(cotx-tanx)dx is equal to

If I=int(sqrt(cotx)-sqrt(tanx))dx, then I equals

int(cos 4x-1)/(cot x-tanx)dx is equal to

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

The value of cotx+cot(60^@+x)+cot(120^@+x) is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to