Home
Class 12
MATHS
The value of sin(pi/14)sin((3pi)/14)sin(...

The value of `sin(pi/14)sin((3pi)/14)sin((5pi)/14)` is

A

1

B

`1//4`

C

`1//8`

D

`sqrt2//7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \] To simplify, we multiply and divide by \( 2 \cos\left(\frac{\pi}{14}\right) \): \[ = \frac{2 \cos\left(\frac{\pi}{14}\right) \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right)}{2 \cos\left(\frac{\pi}{14}\right)} \] ### Step 2: Substitute \( \theta \) Let \( \theta = \frac{\pi}{14} \). Then, we have: \[ = \frac{2 \cos(\theta) \sin(\theta) \sin(3\theta) \sin(5\theta)}{2 \cos(\theta)} \] This simplifies to: \[ = \sin(\theta) \sin(3\theta) \sin(5\theta) \] ### Step 3: Use the identity for \( 2 \sin A \sin B \) Next, we use the identity \( 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \): \[ = \frac{1}{2} \left( \cos(3\theta - \theta) - \cos(3\theta + \theta) \right) \sin(5\theta) \] This becomes: \[ = \frac{1}{2} \left( \cos(2\theta) - \cos(4\theta) \right) \sin(5\theta) \] ### Step 4: Substitute back for \( \theta \) Now, substituting back \( \theta = \frac{\pi}{14} \): \[ = \frac{1}{2} \left( \cos\left(\frac{2\pi}{14}\right) - \cos\left(\frac{4\pi}{14}\right) \right) \sin\left(\frac{5\pi}{14}\right) \] This simplifies to: \[ = \frac{1}{2} \left( \cos\left(\frac{\pi}{7}\right) - \cos\left(\frac{2\pi}{7}\right) \right) \sin\left(\frac{5\pi}{14}\right) \] ### Step 5: Use the identity for \( \sin 2A \) Now, we can rewrite \( \sin(5\theta) \) as: \[ = \frac{1}{4} \sin(6\theta) \text{ (using } 2 \sin A \cos A = \sin(2A)\text{)} \] ### Step 6: Final simplification Using the identity for sine: \[ = \frac{1}{8} \sin(7\theta - \theta) = \frac{1}{8} \left( \sin(7\theta) \cos(\theta) - \cos(7\theta) \sin(\theta) \right) \] Since \( 7\theta = \frac{\pi}{2} \), we know: \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0 \] Thus, the expression simplifies to: \[ \frac{\cos(\theta)}{8 \cos(\theta)} = \frac{1}{8} \] ### Conclusion The value of \( \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \) is: \[ \boxed{\frac{1}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

let cos(pi/7),cos((3pi)/7),cos((5pi)/7), the roots of equation 8x^3 - 4x^2 - 4x +1=0 then the value of sin(pi/14),sin((3pi)/14),sin((5pi)/14)

The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)/(14)sin(11pi)/(14)sin(13pi)/(14) is equal to___________

The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin(11pi/14)sin(13pi/14) is equal to___________

The value of sin^(-1)(sin((3pi)/(5)))

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

sin^(-1)sin((3pi)/5)

The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

Prove that: sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14)=1/(64)

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. about to only mathematics

    Text Solution

    |

  2. Which of the following statement is incorrect

    Text Solution

    |

  3. The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

    Text Solution

    |

  4. If sintheta+cosectheta=2, then "sin"^(2)theta+"cosec"^(2)theta is equa...

    Text Solution

    |

  5. If tantheta=(1)/(2) and tanphi=(1)/(3), then the value of theta+phi i...

    Text Solution

    |

  6. If sinx+sin^2x=1, then find the value of cos^(12)x +3cos^(10)x + 3 cos...

    Text Solution

    |

  7. Write the maximum value of 12 sintheta-9sin^2\ \ thetadot

    Text Solution

    |

  8. If f(x)="cos"^(2)x+"sec"^(2)x, then (i) f(x)lt1 (ii) f(x)=1 (iii...

    Text Solution

    |

  9. The maximum value of 3 cos x+4sinx+5, is

    Text Solution

    |

  10. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  11. The number of ordered pairs (alpha, beta) where alpha, beta in (-pi, p...

    Text Solution

    |

  12. The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the ...

    Text Solution

    |

  13. If A +B+C= pi and /C is obtuse then tan A. tan B is

    Text Solution

    |

  14. If 0 < theta < 2pi, then the intervals of values of ? for which 2si...

    Text Solution

    |

  15. If tantheta=x-1/(4x), then sectheta-tantheta is equal to

    Text Solution

    |

  16. If sectheta=x+1/(4x), then s e ctheta+t a ntheta= (a) x ,1/x (b) 2x ...

    Text Solution

    |

  17. If piltthetalt 2pi, then sqrt((1+costheta)/(1-costheta)) is equal to

    Text Solution

    |

  18. If theta lies in the second quadrant. Then the value of sqrt((1-sin ...

    Text Solution

    |

  19. sin^2 theta =(x+y)^2/(4xy) where x,yinR gives theta if and only if

    Text Solution

    |

  20. sec theta=(a^(2)+b^(2))/(a^(2)-b^(2)), where a, binR, gives real balue...

    Text Solution

    |