Home
Class 12
MATHS
If sinx+sin^2x=1, then find the value of...

If `sinx+sin^2x=1`, then find the value of `cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2 `

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin^2 x = 1 \) and find the value of \( \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x - 2 \), we will follow these steps: ### Step 1: Rearranging the equation We start with the equation: \[ \sin x + \sin^2 x = 1 \] Rearranging gives: \[ \sin^2 x + \sin x - 1 = 0 \] ### Step 2: Solving the quadratic equation This is a quadratic equation in terms of \( \sin x \). We can use the quadratic formula: \[ \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 1, c = -1 \). Substituting these values, we get: \[ \sin x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 3: Finding valid values for \( \sin x \) The possible values for \( \sin x \) are: \[ \sin x = \frac{-1 + \sqrt{5}}{2} \quad \text{or} \quad \sin x = \frac{-1 - \sqrt{5}}{2} \] Since \( \sin x \) must be in the range \([-1, 1]\), we only consider: \[ \sin x = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Finding \( \cos^2 x \) Using the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \cos^2 x = 1 - \left(\frac{-1 + \sqrt{5}}{2}\right)^2 \] Calculating \( \sin^2 x \): \[ \sin^2 x = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus, \[ \cos^2 x = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 5: Substituting into the expression We need to find: \[ \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x - 2 \] Let \( y = \cos^2 x = \frac{-1 + \sqrt{5}}{2} \). We can rewrite the expression as: \[ y^6 + 3y^5 + 3y^4 + y^3 - 2 \] ### Step 6: Using the identity Notice that \( y^2 + y - 1 = 0 \) implies \( y^2 = 1 - y \). We can use this to express higher powers of \( y \): - \( y^3 = y \cdot y^2 = y(1 - y) = y - y^2 = y - (1 - y) = 2y - 1 \) - \( y^4 = y \cdot y^3 = y(2y - 1) = 2y^2 - y = 2(1 - y) - y = 2 - 3y \) - \( y^5 = y \cdot y^4 = y(2 - 3y) = 2y - 3y^2 = 2y - 3(1 - y) = 5y - 3 \) - \( y^6 = y \cdot y^5 = y(5y - 3) = 5y^2 - 3y = 5(1 - y) - 3y = 5 - 8y \) ### Step 7: Substituting back into the expression Now substituting these into the expression: \[ (5 - 8y) + 3(5y - 3) + 3(2 - 3y) + (2y - 1) - 2 \] Simplifying this: \[ 5 - 8y + 15y - 9 + 6 - 9y + 2y - 1 - 2 \] Combining like terms: \[ (5 - 9 + 6 - 1 - 2) + (-8y + 15y - 9y + 2y) = -1 + 0y = -1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sin x=cos^2x ,\ then write the value of cos^2x\ (1+cos^2x)dot

If sin x+cos x=a , find the value of sin^6x+cos^6xdot

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

If 4 cos^(2) x = 3 and x is an acute angle find the value of : (i) x (ii) cos^(2)x + cot^(2)x (iii) cos 3x (iv) sin 2x

If sin x+sin^2=1 , then cos^8 x+2 cos^6 x+cos^4 x=

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If sintheta+cosectheta=2, then "sin"^(2)theta+"cosec"^(2)theta is equa...

    Text Solution

    |

  2. If tantheta=(1)/(2) and tanphi=(1)/(3), then the value of theta+phi i...

    Text Solution

    |

  3. If sinx+sin^2x=1, then find the value of cos^(12)x +3cos^(10)x + 3 cos...

    Text Solution

    |

  4. Write the maximum value of 12 sintheta-9sin^2\ \ thetadot

    Text Solution

    |

  5. If f(x)="cos"^(2)x+"sec"^(2)x, then (i) f(x)lt1 (ii) f(x)=1 (iii...

    Text Solution

    |

  6. The maximum value of 3 cos x+4sinx+5, is

    Text Solution

    |

  7. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  8. The number of ordered pairs (alpha, beta) where alpha, beta in (-pi, p...

    Text Solution

    |

  9. The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the ...

    Text Solution

    |

  10. If A +B+C= pi and /C is obtuse then tan A. tan B is

    Text Solution

    |

  11. If 0 < theta < 2pi, then the intervals of values of ? for which 2si...

    Text Solution

    |

  12. If tantheta=x-1/(4x), then sectheta-tantheta is equal to

    Text Solution

    |

  13. If sectheta=x+1/(4x), then s e ctheta+t a ntheta= (a) x ,1/x (b) 2x ...

    Text Solution

    |

  14. If piltthetalt 2pi, then sqrt((1+costheta)/(1-costheta)) is equal to

    Text Solution

    |

  15. If theta lies in the second quadrant. Then the value of sqrt((1-sin ...

    Text Solution

    |

  16. sin^2 theta =(x+y)^2/(4xy) where x,yinR gives theta if and only if

    Text Solution

    |

  17. sec theta=(a^(2)+b^(2))/(a^(2)-b^(2)), where a, binR, gives real balue...

    Text Solution

    |

  18. If 0^@ltthetalt180^@ then sqrt(2+sqrt(2+sqrt(2+...+sqrt(2(1+costheta))...

    Text Solution

    |

  19. sin65^(@)+sin43^(@)-sin29^(@)-sin7^(@) is equal to

    Text Solution

    |

  20. If sec alpha and cosec alpha are the roots of the equation x^(2)-ax+b=...

    Text Solution

    |