Home
Class 12
MATHS
If sec alpha and cosec alpha are the roo...

If `sec alpha and cosec alpha` are the roots of the equation `x^(2)-ax+b=0,` then

A

`a^(2)=b(b-2)`

B

`a^(2)=b(b+2)`

C

`a^(2)+b^(2)=2b`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where `sec alpha` and `cosec alpha` are the roots of the equation `x^2 - ax + b = 0`, we will use the properties of the roots of a quadratic equation. ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the quadratic equation are given as: - Root 1: \( r_1 = \sec \alpha \) - Root 2: \( r_2 = \csc \alpha \) 2. **Sum of the Roots**: According to Vieta's formulas, the sum of the roots of the equation \( x^2 - ax + b = 0 \) is equal to \( a \). \[ r_1 + r_2 = \sec \alpha + \csc \alpha = a \] 3. **Product of the Roots**: Similarly, the product of the roots is equal to \( b \). \[ r_1 \cdot r_2 = \sec \alpha \cdot \csc \alpha = b \] 4. **Expressing in Terms of Sine and Cosine**: Recall that: \[ \sec \alpha = \frac{1}{\cos \alpha} \quad \text{and} \quad \csc \alpha = \frac{1}{\sin \alpha} \] Therefore, we can rewrite the equations: - From the sum: \[ \sec \alpha + \csc \alpha = \frac{1}{\cos \alpha} + \frac{1}{\sin \alpha} = a \] - From the product: \[ \sec \alpha \cdot \csc \alpha = \frac{1}{\cos \alpha} \cdot \frac{1}{\sin \alpha} = b \] 5. **Finding a Common Denominator**: For the sum, we can find a common denominator: \[ \frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha} = a \] This implies: \[ \sin \alpha + \cos \alpha = a \sin \alpha \cos \alpha \] 6. **Substituting for Product**: From the product equation: \[ b = \frac{1}{\sin \alpha \cos \alpha} \implies \sin \alpha \cos \alpha = \frac{1}{b} \] 7. **Substituting Back**: Substitute \( \sin \alpha \cos \alpha \) in the sum equation: \[ \sin \alpha + \cos \alpha = \frac{a}{b} \] 8. **Squaring Both Sides**: Now, square both sides: \[ (\sin \alpha + \cos \alpha)^2 = \left(\frac{a}{b}\right)^2 \] Expanding the left side: \[ \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{a^2}{b^2} \] 9. **Using the Pythagorean Identity**: We know that \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ 1 + 2 \sin \alpha \cos \alpha = \frac{a^2}{b^2} \] 10. **Substituting for \( \sin \alpha \cos \alpha \)**: Substitute \( \sin \alpha \cos \alpha = \frac{1}{b} \): \[ 1 + \frac{2}{b} = \frac{a^2}{b^2} \] 11. **Rearranging**: Multiply through by \( b^2 \): \[ b^2 + 2b = a^2 \] Rearranging gives: \[ a^2 = b^2 + 2b \] ### Final Result: Thus, we find that: \[ a^2 = b + b^2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta ( alpha'<'beta') are the roots of the equation x^2+b x+c=0, where c<0

If alpha and beta are the roots of the equation 2x^(2)+3x+2=0 , find the equation whose roots are alpha+1 and beta+1 .

If alpha and beta are the roots of the equation x^(2)+x-7=0 , form the equation whose roots are alpha^(2) and beta^(2) .

If alpha and beta are the roots of the equation ax^(2)+bc+c=0 then the sum of the roots of the equation a^(2)x^(2)+(b^(2)-2ac)x+b^(2)-4ac=0 is

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -

If alpha, beta and gamma are the roots of the equation x^(3)+x+2=0 , then the equation whose roots are (alpha- beta)(alpha-gamma), (beta-gamma)(beta-gamma) and (gamma-alpha)(gamma-alpha) is

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is

lf alpha and beta are the roots of the equation x^2-ax + b = 0 and A_n = alpha^n + beta^n , then which of the following is true ?

If alpha and beta are the roots of the equation ax ^(2) + bx + c=0,a,b, c in R , alpha ne 0 then which is (are) correct:

If sin alpha and cos alpha are the roots of ax^(2) + bx + c = 0 , then find the relation satisfied by a, b and c .

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If 0^@ltthetalt180^@ then sqrt(2+sqrt(2+sqrt(2+...+sqrt(2(1+costheta))...

    Text Solution

    |

  2. sin65^(@)+sin43^(@)-sin29^(@)-sin7^(@) is equal to

    Text Solution

    |

  3. If sec alpha and cosec alpha are the roots of the equation x^(2)-ax+b=...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If ys invarphi=x s in(gamma+delta)=cos(alpha-beta)sin(gamma-delta), pr...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If sinx+sin^2x=1," then the value of "cos^12x+3cos^10x+3cos^8x+cos^6x-...

    Text Solution

    |

  8. If ABCD is a cyclic quadrilateral, then the value of cosA-cosB+cosC-co...

    Text Solution

    |

  9. If ABCD is a cyclic quadrilateral such that 12tanA-5=0 and 5cosB+3=0, ...

    Text Solution

    |

  10. If sin (picot theta)=cos (pi tantheta), then

    Text Solution

    |

  11. The value of sinx siny sin(x-y)+sinysinz sin(y-z) +sinz sinx sin(z...

    Text Solution

    |

  12. If ABCD is a convex quadrilateral such that 4 sec A+5=0, then find th...

    Text Solution

    |

  13. If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1,...

    Text Solution

    |

  14. Prove:cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)co...

    Text Solution

    |

  15. The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos60^(@)cos72^(@)cos...

    Text Solution

    |

  16. The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

    Text Solution

    |

  17. sum(r=1)^(n-1)cos^(2) (rpi)/2 is equal to

    Text Solution

    |

  18. The value of cot theta-tantheta-2tan2theta-4tan4theta-8cot8theta, is

    Text Solution

    |

  19. If cos(x-y) , cos x and cos (x+y) are in H.P. , then cos x. sec (y/2...

    Text Solution

    |

  20. The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

    Text Solution

    |