Home
Class 12
MATHS
(sin7theta+6sin5theta+17sin3theta+12sint...

`(sin7theta+6sin5theta+17sin3theta+12sintheta)/(sin6theta+5sin4theta+12sin2theta)` is equal to

A

`2cos theta`

B

`cos theta`

C

`2 sin theta`

D

`sin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin 7\theta + 6\sin 5\theta + 17\sin 3\theta + 12\sin \theta}{\sin 6\theta + 5\sin 4\theta + 12\sin 2\theta}\), we can follow these steps: ### Step 1: Define the Numerator and Denominator Let: - \(N = \sin 7\theta + 6\sin 5\theta + 17\sin 3\theta + 12\sin \theta\) (Numerator) - \(D = \sin 6\theta + 5\sin 4\theta + 12\sin 2\theta\) (Denominator) ### Step 2: Rewrite the Numerator We can rewrite the numerator \(N\) by splitting the coefficients: \[ N = \sin 7\theta + (5 + 1)\sin 5\theta + (12 + 5)\sin 3\theta + 12\sin \theta \] This gives us: \[ N = \sin 7\theta + 5\sin 5\theta + \sin 5\theta + 12\sin 3\theta + 5\sin 3\theta + 12\sin \theta \] ### Step 3: Group Terms Now, we can group the terms: \[ N = \sin 7\theta + 5\sin 5\theta + 12\sin 3\theta + \sin 5\theta + 12\sin \theta \] This can be factored as: \[ N = \sin 7\theta + 5(\sin 5\theta + 2\sin 3\theta) + 12\sin \theta \] ### Step 4: Apply the Sine Addition Formula Using the identity \(\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)\), we can simplify: 1. For \(\sin 7\theta + \sin 5\theta\): \[ = 2\sin\left(\frac{7\theta + 5\theta}{2}\right)\cos\left(\frac{7\theta - 5\theta}{2}\right) = 2\sin(6\theta)\cos(\theta) \] 2. For \(5\sin 5\theta + 12\sin 3\theta\): \[ = 5\sin 5\theta + 12\sin 3\theta \] (This part can be left as is for now.) ### Step 5: Combine Terms Now, we can express the numerator \(N\) as: \[ N = 2\sin(6\theta)\cos(\theta) + 5\sin 5\theta + 12\sin 3\theta + 12\sin \theta \] ### Step 6: Factor Out Common Terms We can factor out \(2\cos(\theta)\) from the numerator: \[ N = 2\cos(\theta)(\sin(6\theta) + 5\sin(4\theta) + 12\sin(2\theta)) \] ### Step 7: Recognize the Denominator Notice that the denominator \(D\) is: \[ D = \sin 6\theta + 5\sin 4\theta + 12\sin 2\theta \] Thus, we can write: \[ N = 2\cos(\theta)D \] ### Step 8: Simplify the Expression Now, substituting back into the original expression: \[ \frac{N}{D} = \frac{2\cos(\theta)D}{D} = 2\cos(\theta) \] ### Final Answer Thus, the value of the expression is: \[ \frac{\sin 7\theta + 6\sin 5\theta + 17\sin 3\theta + 12\sin \theta}{\sin 6\theta + 5\sin 4\theta + 12\sin 2\theta} = 2\cos(\theta) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Sum to terms of the series sintheta sin2theta + sin2thetasin3theta + sin3theta sin4theta +..... is equal to

(sin 3theta+sin5theta+sin7theta+sin9theta)/(cos 3theta+cos 5theta+cos 7theta+cos9theta) is equal to

If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta sin13theta)/(sin theta cos 2theta+sin3theta cos 6theta+sin4theta cos13theta)=tan k theta , where k in N . Find the value of k.

(sin5theta+sin2theta-sin theta)/(cos5theta+2cos3theta+2cos^(2)theta+costheta) is equal to

(sin3theta+sin5theta+sin7theta+sin9theta)/(cos3theta+cos5theta+cos7theta+cos9theta) is e q u a l (a) tan3theta (b) cot3theta (c) tan6theta (d) cot6theta

Prove that : (sin theta + 2 sin 3theta + sin 5theta)/(sin 3theta + 2 sin 5theta + sin 7theta) = (sin 3theta)/(sin 5theta)

Solve sin 6 theta=sin 4 theta-sin 2 theta .

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2)theta,cos theta),(sin theta,-cos theta,0)| then, f((pi)/(6))+f((pi)/(3))+f((pi)/(2))+f((2pi)/(3))+f((5pi)/(6))+f(pi)+……+f((53pi)/(6)) is equal to

prove sin(5theta) = 16sin^5(theta)-20sin^3(theta)+5sin(theta)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. tan^(2pi)/(5)-tan^(pi)/(15)-sqrt(3)tan^(2pi)/(5)tan(pi)/(5) is equal t...

    Text Solution

    |

  2. If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

    Text Solution

    |

  3. (sin7theta+6sin5theta+17sin3theta+12sintheta)/(sin6theta+5sin4theta+12...

    Text Solution

    |

  4. If (cos(theta(1)-theta(2)))/(cos(theta(1)+theta(2)))+(cos(theta(3)+the...

    Text Solution

    |

  5. (1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =

    Text Solution

    |

  6. alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2b...

    Text Solution

    |

  7. If cosectheta=(p+q)/(p-q), then cot(pi/4+theta/2)=

    Text Solution

    |

  8. If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)=

    Text Solution

    |

  9. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The value of sum(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

    Text Solution

    |

  12. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  13. The greatest integer less than or equal to (1)/(cos 290^(@))+(1)/(sqrt...

    Text Solution

    |

  14. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  15. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  16. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  17. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  20. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |