Home
Class 12
MATHS
If (cos(theta(1)-theta(2)))/(cos(theta(1...

If `(cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))+(cos(theta_(3)+theta_(4)))/(cos(theta_(3)-theta_(4)))=0,` then `tantheta_(1)tan theta_(2)tan theta_(3)tan theta_(4)=`

A

1

B

2

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)} + \frac{\cos(\theta_3 + \theta_4)}{\cos(\theta_3 - \theta_4)} = 0, \] we will start by applying the cosine addition and subtraction formulas. ### Step 1: Apply Cosine Formulas Using the cosine addition and subtraction formulas, we have: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b, \] \[ \cos(a + b) = \cos a \cos b - \sin a \sin b. \] Applying these to our equation: \[ \frac{\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2} + \frac{\cos \theta_3 \cos \theta_4 - \sin \theta_3 \sin \theta_4}{\cos \theta_3 \cos \theta_4 + \sin \theta_3 \sin \theta_4} = 0. \] ### Step 2: Simplifying the Equation Let’s denote: \[ x = \frac{\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2}, \] \[ y = \frac{\cos \theta_3 \cos \theta_4 - \sin \theta_3 \sin \theta_4}{\cos \theta_3 \cos \theta_4 + \sin \theta_3 \sin \theta_4}. \] Thus, we rewrite our equation as: \[ x + y = 0 \implies y = -x. \] ### Step 3: Expressing in Terms of Tangents Now, we convert \(x\) and \(y\) into terms of tangent: \[ x = \frac{1 + \tan \theta_1 \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}, \] \[ y = \frac{1 - \tan \theta_3 \tan \theta_4}{1 + \tan \theta_3 \tan \theta_4}. \] ### Step 4: Setting Up the Equation Substituting these into our equation gives: \[ \frac{1 + \tan \theta_1 \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2} + \frac{1 - \tan \theta_3 \tan \theta_4}{1 + \tan \theta_3 \tan \theta_4} = 0. \] ### Step 5: Finding a Common Denominator To combine these fractions, we find a common denominator: \[ (1 - \tan \theta_1 \tan \theta_2)(1 + \tan \theta_3 \tan \theta_4). \] This leads to: \[ (1 + \tan \theta_1 \tan \theta_2)(1 + \tan \theta_3 \tan \theta_4) + (1 - \tan \theta_3 \tan \theta_4)(1 - \tan \theta_1 \tan \theta_2) = 0. \] ### Step 6: Expanding and Simplifying Expanding both sides: \[ 1 + \tan \theta_1 \tan \theta_4 + \tan \theta_2 \tan \theta_3 + \tan \theta_1 \tan \theta_2 \tan \theta_3 \tan \theta_4 + 1 - \tan \theta_1 \tan \theta_2 - \tan \theta_3 \tan \theta_4 = 0. \] Combining like terms gives: \[ 2 + \tan \theta_1 \tan \theta_2 \tan \theta_3 \tan \theta_4 - \tan \theta_1 \tan \theta_2 - \tan \theta_3 \tan \theta_4 = 0. \] ### Step 7: Rearranging the Equation Rearranging leads us to: \[ \tan \theta_1 \tan \theta_2 \tan \theta_3 \tan \theta_4 = -1. \] ### Final Answer Thus, we find that: \[ \tan \theta_1 \tan \theta_2 \tan \theta_3 \tan \theta_4 = -1. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If 0 lt theta_(2) lt theta_(1) lt pi/4, cos (theta_(1) + theta_(2)) = 3/5 and cos(theta_(1)-theta_(2))=4/5 , then sintheta_(1) sintheta_(2) equal to

Solve tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1

If (2tan^(2)theta_(1)tan^(2)theta_(2)tan^(2)theta_(3)+tan^(2)theta_(1)tan^(2)theta_(2)+tan^(2)theta_(2)tan^(2)theta_(3)+tan^(2)theta_(3)tan^(2)theta_(1)=1 then which of the following relations hold good ?

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

For theta_(1), theta_(2), ...., theta_(n) in (0, pi/2) , if In (sec theta_(1)-tan theta_(1))+ "In" (sec theta_(2)-tan theta_(2))+...+"In" (sec theta_(n)-tan theta_(n))+ "ln" pi=0 , then the value of cos((sec theta_(1)+ tan theta_(1))(sec theta_(2)+tan theta_(2))....(sec theta_(n)+tan theta_(n))) is equal to

if f(theta)= Costheta_1.Cos theta_2. cos theta_3….. Cos theta_n, show that { tan theta_1+ tan theta_2+ tan theta_3+…..+ tan theta_n } = - {(f' (theta))/(f(theta))},

Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)/cos(27theta)=1/2(tan(27theta)-tan(theta))

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

    Text Solution

    |

  2. (sin7theta+6sin5theta+17sin3theta+12sintheta)/(sin6theta+5sin4theta+12...

    Text Solution

    |

  3. If (cos(theta(1)-theta(2)))/(cos(theta(1)+theta(2)))+(cos(theta(3)+the...

    Text Solution

    |

  4. (1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =

    Text Solution

    |

  5. alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2b...

    Text Solution

    |

  6. If cosectheta=(p+q)/(p-q), then cot(pi/4+theta/2)=

    Text Solution

    |

  7. If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)=

    Text Solution

    |

  8. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. The value of sum(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

    Text Solution

    |

  11. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  12. The greatest integer less than or equal to (1)/(cos 290^(@))+(1)/(sqrt...

    Text Solution

    |

  13. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  14. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  15. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  16. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  19. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  20. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |