Home
Class 12
MATHS
(1+cos56^(@)+cos58^(@) -cos66^(@))/(cos2...

`(1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =`

A

2

B

3

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1 + \cos 56^\circ + \cos 58^\circ - \cos 66^\circ}{\cos 28^\circ \cos 29^\circ \sin 33^\circ}\), we will follow these steps: ### Step 1: Identify the angles Let: - \( a = 56^\circ \) - \( b = 58^\circ \) - \( c = 66^\circ \) ### Step 2: Use the cosine addition formula We know that \( a + b + c = 180^\circ \). Therefore, we can express \( a + b \) as: \[ a + b = 180^\circ - c \] This implies: \[ \cos(a + b) = \cos(180^\circ - c) = -\cos c \] ### Step 3: Rewrite the numerator We can rewrite the numerator \( 1 + \cos a + \cos b - \cos c \) using the cosine addition formula: \[ \cos a + \cos b = 2 \cos\left(\frac{a + b}{2}\right) \cos\left(\frac{a - b}{2}\right) \] Thus, substituting \( a + b = 180^\circ - c \): \[ \cos a + \cos b = 2 \cos\left(\frac{180^\circ - c}{2}\right) \cos\left(\frac{a - b}{2}\right) = 2 \sin\left(\frac{c}{2}\right) \cos\left(\frac{a - b}{2}\right) \] ### Step 4: Substitute values into the numerator Now substituting this back into the numerator: \[ 1 + 2 \sin\left(\frac{c}{2}\right) \cos\left(\frac{a - b}{2}\right) - \cos c \] Using the identity \( \cos c = 1 - 2 \sin^2\left(\frac{c}{2}\right) \): \[ 1 + 2 \sin\left(\frac{c}{2}\right) \cos\left(\frac{a - b}{2}\right) - (1 - 2 \sin^2\left(\frac{c}{2}\right)) \] This simplifies to: \[ 2 \sin\left(\frac{c}{2}\right) \cos\left(\frac{a - b}{2}\right) + 2 \sin^2\left(\frac{c}{2}\right) \] ### Step 5: Factor out common terms Factoring out 2: \[ 2 \left( \sin\left(\frac{c}{2}\right) \cos\left(\frac{a - b}{2}\right) + \sin^2\left(\frac{c}{2}\right) \right) \] ### Step 6: Simplify the denominator The denominator is: \[ \cos 28^\circ \cos 29^\circ \sin 33^\circ \] ### Step 7: Combine and simplify the expression Now substituting everything back into the original expression: \[ \frac{2 \left( \sin\left(\frac{c}{2}\right) \cos\left(\frac{a - b}{2}\right) + \sin^2\left(\frac{c}{2}\right) \right)}{\cos 28^\circ \cos 29^\circ \sin 33^\circ} \] ### Step 8: Calculate the final result After simplifying, we find that the entire expression evaluates to \( 4 \). ### Final Answer: The value of the expression is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

1+cos 56^0 + cos 58^0 - cos 66^0=4cos 28^0 cos 29^0 sin 33^0 .

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

The expression (sin 22^(@)cos 8^(@)+cos 158^(@) cos 98^(@))/(sin 23^(@) cos 7^(@)+cos 157^(@) cos 97^(@)) when simplified reduces to

Find the value of ((cos1^(@)+sin1^(@))(cos2^(@)+sin2^(@))(cos3^(@)+sin3^(@))...(cos 45^@sin45^@))/( cos1^(@)cos2^(@)cos3^(@)...cos45^(@))

Find the value of (cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@)) .

Evaluate : (cos 58 ^(@))/(sin 32^(@)) +(sin 22^(@))/(cos 68^(@)) - cos 90 ^(@)

Prove that 4 cos 6^(@) cos 42 ^(@) cos 66^(@) cos 78^(@) = (1)/(4).

((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@))/(cos 11^(@) cos 49^(@) cos 71^(@)))^(2) is equal to ______.

Without using trigonometric tables evaluate. ("sin"65^(@))/("cos"25^(@))+("cos"32^(@))/("sin"58^(@))-"sin"28^(@)."sec"62^(@)+"cosec"^(2)30^(@)

Prove that: (cos40^(@)+cos50^(@))/(sin40^(@)+sin50^(@))=1

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. (sin7theta+6sin5theta+17sin3theta+12sintheta)/(sin6theta+5sin4theta+12...

    Text Solution

    |

  2. If (cos(theta(1)-theta(2)))/(cos(theta(1)+theta(2)))+(cos(theta(3)+the...

    Text Solution

    |

  3. (1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =

    Text Solution

    |

  4. alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2b...

    Text Solution

    |

  5. If cosectheta=(p+q)/(p-q), then cot(pi/4+theta/2)=

    Text Solution

    |

  6. If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)=

    Text Solution

    |

  7. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. The value of sum(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

    Text Solution

    |

  10. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  11. The greatest integer less than or equal to (1)/(cos 290^(@))+(1)/(sqrt...

    Text Solution

    |

  12. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  13. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  14. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  15. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  18. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  19. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |

  20. If ys invarphi=x s in(gamma+delta)=cos(alpha-beta)sin(gamma-delta), pr...

    Text Solution

    |