Home
Class 12
MATHS
alpha and beta are acute angles and cos2...

`alpha and beta` are acute angles and `cos2alpha = (3cos2beta-1)/(3-cos2beta)` then `tan alpha cot beta =`

A

`sqrt3`

B

`sqrt2`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta} \] ### Step 1: Apply Componendo and Dividendo Using the Componendo and Dividendo theorem, we can rewrite the equation: \[ \frac{a}{b} = \frac{c}{d} \implies \frac{a+b}{a-b} = \frac{c+d}{c-d} \] Here, let \( a = \cos 2\alpha \), \( b = 1 \), \( c = 3\cos 2\beta - 1 \), and \( d = 3 - \cos 2\beta \). Thus, we have: \[ \frac{\cos 2\alpha + 1}{\cos 2\alpha - 1} = \frac{(3\cos 2\beta - 1) + (3 - \cos 2\beta)}{(3\cos 2\beta - 1) - (3 - \cos 2\beta)} \] ### Step 2: Simplify the Right Side Now simplify the right-hand side: \[ \text{Numerator: } (3\cos 2\beta - 1) + (3 - \cos 2\beta) = 2\cos 2\beta + 2 \] \[ \text{Denominator: } (3\cos 2\beta - 1) - (3 - \cos 2\beta) = 2\cos 2\beta - 4 \] So the equation becomes: \[ \frac{\cos 2\alpha + 1}{\cos 2\alpha - 1} = \frac{2(\cos 2\beta + 1)}{2(\cos 2\beta - 2)} \] ### Step 3: Cancel Out the 2's Dividing both sides by 2 gives: \[ \frac{\cos 2\alpha + 1}{\cos 2\alpha - 1} = \frac{\cos 2\beta + 1}{\cos 2\beta - 2} \] ### Step 4: Express in Terms of Sine and Cosine Using the double angle identities: \[ \cos 2\theta = 2\cos^2\theta - 1 \quad \text{and} \quad \cos 2\theta = 1 - 2\sin^2\theta \] We can express: \[ \cos 2\alpha + 1 = 2\cos^2\alpha \quad \text{and} \quad \cos 2\alpha - 1 = -2\sin^2\alpha \] Thus, we rewrite the left side: \[ \frac{2\cos^2\alpha}{-2\sin^2\alpha} = -\frac{\cos^2\alpha}{\sin^2\alpha} = -\cot^2\alpha \] For the right side, we have: \[ \cos 2\beta + 1 = 2\cos^2\beta \quad \text{and} \quad \cos 2\beta - 2 = -2\sin^2\beta \] So, the right side becomes: \[ \frac{2\cos^2\beta}{-2\sin^2\beta} = -\cot^2\beta \] ### Step 5: Set the Two Sides Equal Now we have: \[ -\cot^2\alpha = -\cot^2\beta \] Thus: \[ \cot^2\alpha = \cot^2\beta \] ### Step 6: Find \( \tan \alpha \cot \beta \) Taking square roots (since \(\alpha\) and \(\beta\) are acute angles): \[ \cot\alpha = \cot\beta \implies \tan\alpha = \tan\beta \] Thus, we find: \[ \tan\alpha \cot\beta = \tan\beta \cdot \frac{1}{\tan\beta} = 1 \] ### Final Answer Therefore, the value of \( \tan\alpha \cot\beta \) is: \[ \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

If 2 tan (alpha/2)=tan (beta/2), prove that cos alpha=(3+5 cos beta)/(5+3 cos beta).

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If (cos(theta(1)-theta(2)))/(cos(theta(1)+theta(2)))+(cos(theta(3)+the...

    Text Solution

    |

  2. (1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =

    Text Solution

    |

  3. alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2b...

    Text Solution

    |

  4. If cosectheta=(p+q)/(p-q), then cot(pi/4+theta/2)=

    Text Solution

    |

  5. If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)=

    Text Solution

    |

  6. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of sum(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

    Text Solution

    |

  9. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  10. The greatest integer less than or equal to (1)/(cos 290^(@))+(1)/(sqrt...

    Text Solution

    |

  11. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  12. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  13. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  14. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  17. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  18. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |

  19. If ys invarphi=x s in(gamma+delta)=cos(alpha-beta)sin(gamma-delta), pr...

    Text Solution

    |

  20. cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    Text Solution

    |