Home
Class 12
MATHS
The value of sum(k=1)^(3) cos^(2)(2k-1)(...

The value of `sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12),` is

A

0

B

`1//2`

C

`-1//2`

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \[ \sum_{k=1}^{3} \cos^2\left( (2k-1) \frac{\pi}{12} \right), \] we will evaluate the sum step by step. ### Step 1: Expand the summation We start by substituting the values of \( k \) from 1 to 3 into the expression. - For \( k = 1 \): \[ \cos^2\left( (2 \cdot 1 - 1) \frac{\pi}{12} \right) = \cos^2\left( \frac{\pi}{12} \right) \] - For \( k = 2 \): \[ \cos^2\left( (2 \cdot 2 - 1) \frac{\pi}{12} \right) = \cos^2\left( \frac{3\pi}{12} \right) = \cos^2\left( \frac{\pi}{4} \right) \] - For \( k = 3 \): \[ \cos^2\left( (2 \cdot 3 - 1) \frac{\pi}{12} \right) = \cos^2\left( \frac{5\pi}{12} \right) \] Thus, we can rewrite the sum as: \[ \sum_{k=1}^{3} \cos^2\left( (2k-1) \frac{\pi}{12} \right) = \cos^2\left( \frac{\pi}{12} \right) + \cos^2\left( \frac{\pi}{4} \right) + \cos^2\left( \frac{5\pi}{12} \right) \] ### Step 2: Calculate \( \cos^2\left( \frac{\pi}{4} \right) \) We know that: \[ \cos\left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \implies \cos^2\left( \frac{\pi}{4} \right) = \left( \frac{1}{\sqrt{2}} \right)^2 = \frac{1}{2} \] ### Step 3: Calculate \( \cos^2\left( \frac{5\pi}{12} \right) \) Using the identity \( \cos\left( \frac{5\pi}{12} \right) = \sin\left( \frac{\pi}{12} \right) \): \[ \cos^2\left( \frac{5\pi}{12} \right) = \sin^2\left( \frac{\pi}{12} \right) \] ### Step 4: Use the Pythagorean identity We know that: \[ \sin^2\theta + \cos^2\theta = 1 \] Thus, \[ \sin^2\left( \frac{\pi}{12} \right) + \cos^2\left( \frac{\pi}{12} \right) = 1 \] This implies: \[ \sin^2\left( \frac{\pi}{12} \right) = 1 - \cos^2\left( \frac{\pi}{12} \right) \] ### Step 5: Substitute back into the sum Now we can substitute back into our sum: \[ \cos^2\left( \frac{\pi}{12} \right) + \frac{1}{2} + \sin^2\left( \frac{\pi}{12} \right) \] Substituting \( \sin^2\left( \frac{\pi}{12} \right) \): \[ \cos^2\left( \frac{\pi}{12} \right) + \frac{1}{2} + (1 - \cos^2\left( \frac{\pi}{12} \right)) = 1 + \frac{1}{2} = \frac{3}{2} \] ### Final Answer Thus, the value of the sum is: \[ \sum_{k=1}^{3} \cos^2\left( (2k-1) \frac{\pi}{12} \right) = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

Find the value off sum_(k=1)^10(2+3^k)

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Evaluate sum_(k=1)^(11)(2+3^k)

sum_(k=0)^(5)(-1)^(k)2k

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

prod_(k=0)^3 (1+cos\ ((2k+1)pi)/8)=

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. The value of sum(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

    Text Solution

    |

  4. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  5. The greatest integer less than or equal to (1)/(cos 290^(@))+(1)/(sqrt...

    Text Solution

    |

  6. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  7. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  8. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  9. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  12. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  13. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |

  14. If ys invarphi=x s in(gamma+delta)=cos(alpha-beta)sin(gamma-delta), pr...

    Text Solution

    |

  15. cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    Text Solution

    |

  16. If tanx=(b)/(a), then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)...

    Text Solution

    |

  17. In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

    Text Solution

    |

  18. If sqrt3sin theta+costhetagt0, then theta lies in the interval

    Text Solution

    |

  19. Let 0lt x lepi//4, (sec 2x-tan2x) equals

    Text Solution

    |

  20. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |