Home
Class 12
MATHS
If (a^(2)+1)/(2a)=costheta, then (a^(6)+...

If `(a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=`

A

`cos^(2) theta`

B

`cos^(3)theta`

C

`cos 2 theta`

D

`cos 3theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{a^2 + 1}{2a} = \cos \theta \] We need to find the value of: \[ \frac{a^6 + 1}{2a^3} \] ### Step 1: Rewrite the given equation From the given equation, we can manipulate it: \[ \frac{a^2 + 1}{2a} = \cos \theta \] Multiplying both sides by \(2a\): \[ a^2 + 1 = 2a \cos \theta \] ### Step 2: Rearranging the equation Now, we can rearrange this equation to isolate \(a^2\): \[ a^2 = 2a \cos \theta - 1 \] ### Step 3: Finding \(a + \frac{1}{a}\) Next, we want to find \(a + \frac{1}{a}\). We can express this in terms of \(\cos \theta\): \[ \frac{a^2 + 1}{a} = 2 \cos \theta \] Thus, \[ a + \frac{1}{a} = 2 \cos \theta \] ### Step 4: Cubing both sides Now, we will cube \(a + \frac{1}{a}\): \[ \left(a + \frac{1}{a}\right)^3 = (2 \cos \theta)^3 \] Using the identity \((x + y)^3 = x^3 + y^3 + 3xy(x + y)\): \[ a^3 + \frac{1}{a^3} + 3 \cdot a \cdot \frac{1}{a} \cdot (a + \frac{1}{a}) = 8 \cos^3 \theta \] This simplifies to: \[ a^3 + \frac{1}{a^3} + 3(2 \cos \theta) = 8 \cos^3 \theta \] ### Step 5: Isolating \(a^3 + \frac{1}{a^3}\) Now, we can isolate \(a^3 + \frac{1}{a^3}\): \[ a^3 + \frac{1}{a^3} = 8 \cos^3 \theta - 6 \cos \theta \] ### Step 6: Finding \(a^6 + 1\) Now we can express \(a^6 + 1\) in terms of \(a^3\): \[ a^6 + 1 = (a^3)^2 + 1 = (a^3 + \frac{1}{a^3})^2 - 2 \] Substituting \(a^3 + \frac{1}{a^3}\): \[ a^6 + 1 = \left(8 \cos^3 \theta - 6 \cos \theta\right)^2 - 2 \] ### Step 7: Finding \(\frac{a^6 + 1}{2a^3}\) Finally, we need to find: \[ \frac{a^6 + 1}{2a^3} = \frac{(8 \cos^3 \theta - 6 \cos \theta)^2 - 2}{2a^3} \] Using the identity \(a^3 = \frac{(8 \cos^3 \theta - 6 \cos \theta)}{2}\): \[ \frac{a^6 + 1}{2a^3} = 4 \cos^3 \theta - 3 \cos \theta \] ### Step 8: Recognizing the identity The expression \(4 \cos^3 \theta - 3 \cos \theta\) is the identity for \(\cos(3\theta)\): \[ \frac{a^6 + 1}{2a^3} = \cos(3\theta) \] Thus, the final answer is: \[ \frac{a^6 + 1}{2a^3} = \cos(3\theta) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If z + 1/z = 2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

i) Prove that: (1-sin2A)/(1+sin2A) = tan^(2)(pi/4-A) ii) If costheta=1/2(x+1/x) , then prove that: cos2theta=1/2(x^(2)+1/x^(2)) and cos3theta=1/2(x^(3)+1/x^(3))

Sides a , b , c of !ABC are in A.P. and costheta_(1)=a/(b+c)costheta_(2)=b/(a+c),costheta_(3)=c/(a+b) , then tan^(2)(theta_(1))/2+tan^(2)(theta_(3))/2 =

If costheta= 1/2(a+1/a), show that cos2theta = 1/2*(a^2 + 1/(a^2))

If 2costheta=x+1/x , then 2cos2theta= ?

If costheta_1 =2costheta_2, then tan((theta_1-theta_2)/2)tan((theta_1+theta_2)/2) is equal to (a) 1/3 (b) -1/3 (c) 1 (d) -1

Prove that: (2cos2^ntheta+1)/(2costheta+1)=(2costheta-1)(2cos2theta-1)(2cos2^2theta-1) ...(2cos2^(n-1)theta-1)

If cos^(-1)x/3+cos^(-1)y/2=theta/2 , then 4x^2-12 x ycostheta/2+9y^2= (a) 36 (b) 36-36costheta (c) 18-18costheta (d) 18+18costheta

If sintheta_1-sintheta_2=a a n d costheta_1+costheta_2=b , then (a) a^2+b^2geq4 (b) a^2+b^2lt=4 (c) a^2+b^2geq3 (d) a^2+b^2lt=2

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. about to only mathematics

    Text Solution

    |

  2. The value of sum(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

    Text Solution

    |

  3. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  4. The greatest integer less than or equal to (1)/(cos 290^(@))+(1)/(sqrt...

    Text Solution

    |

  5. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  6. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  7. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  8. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  11. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  12. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |

  13. If ys invarphi=x s in(gamma+delta)=cos(alpha-beta)sin(gamma-delta), pr...

    Text Solution

    |

  14. cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    Text Solution

    |

  15. If tanx=(b)/(a), then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)...

    Text Solution

    |

  16. In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

    Text Solution

    |

  17. If sqrt3sin theta+costhetagt0, then theta lies in the interval

    Text Solution

    |

  18. Let 0lt x lepi//4, (sec 2x-tan2x) equals

    Text Solution

    |

  19. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  20. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |