Home
Class 12
MATHS
If tan alpha=(1+2^(-x))^(-1), tan beta=(...

If `tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta` equals

A

`pi//6`

B

`pi//4`

C

`pi//3`

D

`pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha + \beta \) given \( \tan \alpha = (1 + 2^{-x})^{-1} \) and \( \tan \beta = (1 + 2^{x+1})^{-1} \). ### Step-by-Step Solution: 1. **Express \( \tan \alpha \) and \( \tan \beta \)**: \[ \tan \alpha = (1 + 2^{-x})^{-1} = \frac{1}{1 + 2^{-x}} \] \[ \tan \beta = (1 + 2^{x+1})^{-1} = \frac{1}{1 + 2^{x+1}} \] 2. **Rewrite \( 2^{-x} \) and \( 2^{x+1} \)**: \[ \tan \alpha = \frac{1}{1 + \frac{1}{2^x}} = \frac{2^x}{2^x + 1} \] \[ \tan \beta = \frac{1}{1 + 2 \cdot 2^x} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2 \cdot 2^x} \] 3. **Find a common denominator for \( \tan \beta \)**: \[ \tan \beta = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2 \cdot 2^x} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2^{x+1}} = \frac{1}{1 + 2^{x+1}} \] 4. **Use the formula for \( \tan(\alpha + \beta) \)**: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] 5. **Substituting the values of \( \tan \alpha \) and \( \tan \beta \)**: \[ \tan(\alpha + \beta) = \frac{\frac{2^x}{2^x + 1} + \frac{1}{1 + 2^{x+1}}}{1 - \left(\frac{2^x}{2^x + 1}\right) \left(\frac{1}{1 + 2^{x+1}}\right)} \] 6. **Finding the numerator**: \[ \text{Numerator} = \frac{2^x(1 + 2^{x+1}) + (2^x + 1)}{(2^x + 1)(1 + 2^{x+1})} \] Simplifying this gives: \[ = \frac{2^x + 2^{2x+1} + 2^x + 1}{(2^x + 1)(1 + 2^{x+1})} \] 7. **Finding the denominator**: \[ \text{Denominator} = 1 - \frac{2^x}{(2^x + 1)(1 + 2^{x+1})} \] Simplifying this gives: \[ = \frac{(2^x + 1)(1 + 2^{x+1}) - 2^x}{(2^x + 1)(1 + 2^{x+1})} \] 8. **Final expression for \( \tan(\alpha + \beta) \)**: After simplification, we find that: \[ \tan(\alpha + \beta) = 1 \] 9. **Conclusion**: Since \( \tan(\alpha + \beta) = 1 \), we have: \[ \alpha + \beta = \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer: \[ \alpha + \beta = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what is the value of alpha + beta?

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

Statement-1: If alpha,beta roots of the equation 18(tan^(-1)x)^(2)-9pi tan^(-1)x+pi^(2)=0 then alpha+beta =(4)/sqrt(3) Statement-2: sec^(2)cos^(-1)(1/4)+cosec^(2)sin^(-1)(1/5)=41

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)) , where 0ltalpha,betalt(pi)/(2) , then alpha-beta is equa to :

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

If cos( alpha+beta) + sin(alpha-beta) = 0 and 2010tan beta - 1 = 0 then tan alpha is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  2. The greatest integer less than or equal to (1)/(cos 290^(@))+(1)/(sqrt...

    Text Solution

    |

  3. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  4. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  5. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  6. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  9. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  10. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |

  11. If ys invarphi=x s in(gamma+delta)=cos(alpha-beta)sin(gamma-delta), pr...

    Text Solution

    |

  12. cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    Text Solution

    |

  13. If tanx=(b)/(a), then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)...

    Text Solution

    |

  14. In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

    Text Solution

    |

  15. If sqrt3sin theta+costhetagt0, then theta lies in the interval

    Text Solution

    |

  16. Let 0lt x lepi//4, (sec 2x-tan2x) equals

    Text Solution

    |

  17. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  18. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  19. If (cos theta)/(a)=(sin theta)/(b), then (a)/(sec2theta)+(b)/(cosec2th...

    Text Solution

    |

  20. If k(1)=tan 27 theta-tan theta and k(2)=(sin theta)/(cos 3 theta)+(sin...

    Text Solution

    |