Home
Class 12
MATHS
If T(n)=cos^(n)theta+sin ^(n)theta, then...

If `T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=`

A

2

B

3

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( 2T_6 - 3T_4 + 1 \) where \( T_n = \cos^n \theta + \sin^n \theta \). ### Step-by-step Solution: 1. **Define \( T_6 \) and \( T_4 \)**: \[ T_6 = \cos^6 \theta + \sin^6 \theta \] \[ T_4 = \cos^4 \theta + \sin^4 \theta \] 2. **Substitute \( T_6 \) and \( T_4 \) into the expression**: \[ 2T_6 - 3T_4 + 1 = 2(\cos^6 \theta + \sin^6 \theta) - 3(\cos^4 \theta + \sin^4 \theta) + 1 \] 3. **Use the identity for \( \cos^6 \theta + \sin^6 \theta \)**: We can use the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \cos^2 \theta \) and \( b = \sin^2 \theta \): \[ \cos^6 \theta + \sin^6 \theta = (\cos^2 \theta + \sin^2 \theta)(\cos^4 \theta - \cos^2 \theta \sin^2 \theta + \sin^4 \theta) \] Since \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \cos^6 \theta + \sin^6 \theta = \cos^4 \theta - \cos^2 \theta \sin^2 \theta + \sin^4 \theta \] 4. **Substituting back into the expression**: \[ 2T_6 = 2(\cos^4 \theta - \cos^2 \theta \sin^2 \theta + \sin^4 \theta) \] \[ = 2\cos^4 \theta - 2\cos^2 \theta \sin^2 \theta + 2\sin^4 \theta \] 5. **Now substitute \( T_4 \)**: \[ T_4 = \cos^4 \theta + \sin^4 \theta \] Therefore, \[ 3T_4 = 3(\cos^4 \theta + \sin^4 \theta) = 3\cos^4 \theta + 3\sin^4 \theta \] 6. **Combine all terms**: \[ 2T_6 - 3T_4 + 1 = (2\cos^4 \theta - 2\cos^2 \theta \sin^2 \theta + 2\sin^4 \theta) - (3\cos^4 \theta + 3\sin^4 \theta) + 1 \] \[ = (2\cos^4 \theta - 3\cos^4 \theta) + (2\sin^4 \theta - 3\sin^4 \theta) - 2\cos^2 \theta \sin^2 \theta + 1 \] \[ = -\cos^4 \theta - \sin^4 \theta - 2\cos^2 \theta \sin^2 \theta + 1 \] 7. **Using the identity \( \cos^4 \theta + \sin^4 \theta = (\cos^2 \theta + \sin^2 \theta)^2 - 2\cos^2 \theta \sin^2 \theta \)**: \[ = 1 - 2\cos^2 \theta \sin^2 \theta \] Thus, \[ -\cos^4 \theta - \sin^4 \theta = - (1 - 2\cos^2 \theta \sin^2 \theta) \] Therefore, \[ = -1 + 2\cos^2 \theta \sin^2 \theta - 2\cos^2 \theta \sin^2 \theta + 1 = 0 \] 8. **Final Result**: \[ 2T_6 - 3T_4 + 1 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If P_n = cos^n theta+ sin^n theta then 2P_6-3P_4 + 1 =

If T_n =sin^n theta+cos^n theta, then (T_6-T_4)/T_6 =m holds for values of m satisfying (A) m in [-1, 1/3] (B) m in [0, 1/3] (C) m in [-1,0] (D) m in [-1, - 1/2]

If f (theta)=4/3 (1- cos ^(6) theta - sin ^(6)theta), then lim _(ntooo) 1/n [sqrt(f ((1)/(n)))+sqrt(f ((2)/(n)))+sqrt(f((n)/(n)))]=

If S_n=cos^n theta+sin^n theta then find the value of 3S_4-2S_6

If x=a\ cos^3theta,\ \ y=a\ sin^3theta , then sqrt(1+((dy)/(dx))^2)= (a) t a n^2theta (b) s e c^2theta (c) sectheta (d) |sectheta|

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

3sin^(2)x-7sin x +2=0, x in [0,(pi)/(2)] and f_(n)(theta)=sin^(n) theta + cos^(n) theta . On the basis of above information, the value of ( sin 5 x + sin 4 x)/( 1+ 2 cos 3 x) is:

Prove that cos theta cos 2 theta cos 4 theta…. Cos 2 ^(n-1) theta = ( sin ( 2 ^(n) theta))/( 2 ^(n) (sin theta)) .

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  2. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  3. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  4. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equa...

    Text Solution

    |

  7. The minimum value of (1)/(3sintheta-4costheta+7), is

    Text Solution

    |

  8. The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    Text Solution

    |

  9. If ys invarphi=x s in(gamma+delta)=cos(alpha-beta)sin(gamma-delta), pr...

    Text Solution

    |

  10. cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    Text Solution

    |

  11. If tanx=(b)/(a), then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)...

    Text Solution

    |

  12. In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

    Text Solution

    |

  13. If sqrt3sin theta+costhetagt0, then theta lies in the interval

    Text Solution

    |

  14. Let 0lt x lepi//4, (sec 2x-tan2x) equals

    Text Solution

    |

  15. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  16. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  17. If (cos theta)/(a)=(sin theta)/(b), then (a)/(sec2theta)+(b)/(cosec2th...

    Text Solution

    |

  18. If k(1)=tan 27 theta-tan theta and k(2)=(sin theta)/(cos 3 theta)+(sin...

    Text Solution

    |

  19. Find the number of integral values of k for which the equation 7 cos x...

    Text Solution

    |

  20. If A=sin^(2)theta+cos^(4)theta, then find all real values of theta.

    Text Solution

    |