Home
Class 12
MATHS
In tantheta+sec theta=sqrt3,0ltthetaltpi...

In `tantheta+sec theta=sqrt3,0ltthetaltpi, then theta` is equal to

A

`5pi//6`

B

`2pi//3`

C

`pi//6`

D

`pi//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \sec \theta = \sqrt{3} \) where \( 0 < \theta < \pi \), we can follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \sec \theta = \frac{1}{\cos \theta} \] Substituting these into the equation gives: \[ \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \sqrt{3} \] ### Step 2: Combine the fractions Taking the common denominator, we have: \[ \frac{\sin \theta + 1}{\cos \theta} = \sqrt{3} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ \sin \theta + 1 = \sqrt{3} \cos \theta \] ### Step 4: Rearrange the equation Rearranging the equation results in: \[ \sin \theta = \sqrt{3} \cos \theta - 1 \] ### Step 5: Square both sides To eliminate the sine and cosine, we square both sides: \[ \sin^2 \theta = (\sqrt{3} \cos \theta - 1)^2 \] Expanding the right side: \[ \sin^2 \theta = 3 \cos^2 \theta - 2\sqrt{3} \cos \theta + 1 \] ### Step 6: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can substitute \( \sin^2 \theta \) with \( 1 - \cos^2 \theta \): \[ 1 - \cos^2 \theta = 3 \cos^2 \theta - 2\sqrt{3} \cos \theta + 1 \] ### Step 7: Simplify the equation Subtracting 1 from both sides: \[ -\cos^2 \theta = 3 \cos^2 \theta - 2\sqrt{3} \cos \theta \] Rearranging gives: \[ 0 = 4 \cos^2 \theta - 2\sqrt{3} \cos \theta \] ### Step 8: Factor the equation Factoring out \( 2 \cos \theta \): \[ 2 \cos \theta (2 \cos \theta - \sqrt{3}) = 0 \] ### Step 9: Solve for \( \cos \theta \) Setting each factor to zero gives: 1. \( 2 \cos \theta = 0 \) which implies \( \cos \theta = 0 \) (not valid in the given range) 2. \( 2 \cos \theta - \sqrt{3} = 0 \) which implies \( \cos \theta = \frac{\sqrt{3}}{2} \) ### Step 10: Find \( \theta \) The solutions for \( \theta \) where \( \cos \theta = \frac{\sqrt{3}}{2} \) are: \[ \theta = \frac{\pi}{6} \quad \text{and} \quad \theta = \frac{11\pi}{6} \quad (\text{but } \frac{11\pi}{6} \text{ is not in the range } 0 < \theta < \pi) \] Thus, the solution is: \[ \theta = \frac{\pi}{6} \] ### Final Answer The value of \( \theta \) is \( \frac{\pi}{6} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 4costheta-3sectheta=2tantheta , then theta is equal to

If sintheta=-1/2 and tantheta=1/sqrt(3) then theta is equal to,

If cos(theta+phi)=mcos(theta-phi) then tantheta is equal to

If theta and 2theta-45^@ are acute angles such that sintheta=cos(2theta-45^@) , then tantheta is equal to (a) 1 (b) -1 (c) sqrt(3) (d) 1/(sqrt(3))

Solve: sec2theta=2/sqrt(3)

If -1+sqrt(- 3)=r e^(i \ theta) , then theta is equal to

(cottheta)/(cottheta-cot3theta) + tantheta/(tantheta-tan3theta) is equal to

Solve : tan theta + sec theta = sqrt3.

Solve tan theta + sec theta =sqrt(3) for the values of theta between 0 and 2pi

If tantheta=(a)/(b) , then bcos2theta+asin2theta is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    Text Solution

    |

  2. If tanx=(b)/(a), then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)...

    Text Solution

    |

  3. In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

    Text Solution

    |

  4. If sqrt3sin theta+costhetagt0, then theta lies in the interval

    Text Solution

    |

  5. Let 0lt x lepi//4, (sec 2x-tan2x) equals

    Text Solution

    |

  6. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  7. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  8. If (cos theta)/(a)=(sin theta)/(b), then (a)/(sec2theta)+(b)/(cosec2th...

    Text Solution

    |

  9. If k(1)=tan 27 theta-tan theta and k(2)=(sin theta)/(cos 3 theta)+(sin...

    Text Solution

    |

  10. Find the number of integral values of k for which the equation 7 cos x...

    Text Solution

    |

  11. If A=sin^(2)theta+cos^(4)theta, then find all real values of theta.

    Text Solution

    |

  12. The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

    Text Solution

    |

  13. The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

    Text Solution

    |

  14. If A+B+C=pi then sin2A+sin2B+sin2C=

    Text Solution

    |

  15. The expression tan^2alpha+cot^2alpha is

    Text Solution

    |

  16. Given alpha+beta+gamma=pi, prove that sin^2alpha+sin^2beta-sin^2gamma=...

    Text Solution

    |

  17. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  18. The roots of the equation 4x^(2)-2sqrt(5)x+1=0 are

    Text Solution

    |

  19. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  20. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |