Home
Class 12
MATHS
Let 0lt x lepi//4, (sec 2x-tan2x) equals...

Let `0lt x lepi//4, (sec 2x-tan2x)` equals

A

`tan^(2)(x+pi//4)`

B

`tan(x+pi//4)`

C

`tan(pi//4-x)`

D

`tan(x-pi//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec 2x - \tan 2x = 2 \) for \( 0 < x \leq \frac{\pi}{4} \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting \( \sec 2x \) and \( \tan 2x \) in terms of sine and cosine: \[ \sec 2x = \frac{1}{\cos 2x}, \quad \tan 2x = \frac{\sin 2x}{\cos 2x} \] Thus, we can rewrite the equation as: \[ \frac{1}{\cos 2x} - \frac{\sin 2x}{\cos 2x} = 2 \] ### Step 2: Combine the fractions Now, we can combine the fractions over a common denominator: \[ \frac{1 - \sin 2x}{\cos 2x} = 2 \] ### Step 3: Cross-multiply Next, we cross-multiply to eliminate the fraction: \[ 1 - \sin 2x = 2 \cos 2x \] ### Step 4: Rearrange the equation Rearranging gives us: \[ 1 = 2 \cos 2x + \sin 2x \] ### Step 5: Use the Pythagorean identity We can use the Pythagorean identity \( \cos^2 2x + \sin^2 2x = 1 \). However, we will first express \( \sin 2x \) in terms of \( \cos 2x \): Let \( \sin 2x = \sqrt{1 - \cos^2 2x} \). ### Step 6: Substitute and simplify Substituting \( \sin 2x \) into the equation gives: \[ 1 = 2 \cos 2x + \sqrt{1 - \cos^2 2x} \] Squaring both sides to eliminate the square root leads to: \[ (1 - 2 \cos 2x)^2 = 1 - \cos^2 2x \] ### Step 7: Expand and simplify Expanding the left side: \[ 1 - 4 \cos 2x + 4 \cos^2 2x = 1 - \cos^2 2x \] This simplifies to: \[ 4 \cos^2 2x - 4 \cos 2x = 0 \] ### Step 8: Factor the equation Factoring gives: \[ 4 \cos 2x (\cos 2x - 1) = 0 \] This results in two cases: 1. \( \cos 2x = 0 \) 2. \( \cos 2x - 1 = 0 \) (i.e., \( \cos 2x = 1 \)) ### Step 9: Solve for \( x \) 1. For \( \cos 2x = 0 \): \[ 2x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \implies x = \frac{\pi}{4} + \frac{n\pi}{2} \] Since \( 0 < x \leq \frac{\pi}{4} \), we take \( n = 0 \) which gives \( x = \frac{\pi}{4} \). 2. For \( \cos 2x = 1 \): \[ 2x = 2n\pi \quad (n \in \mathbb{Z}) \implies x = n\pi \] The only solution in the interval \( 0 < x \leq \frac{\pi}{4} \) is \( x = 0 \), which is not included in our range. ### Conclusion Thus, the only solution is: \[ x = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

int x^3 (sec^2x-tan^2x)dx

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to

If -1lt x lt 0 then tan^(-1) x equals

If x lt 0 then tan^(-1)(1/x) equals

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If cosx=-3/(5)andpiltxlt(3pi)/(2), then ("cosec"x+"cot"x)/("sec"x-"tan"x) is equal to

If cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…………..)+tan^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-……..)=(pi)/(2)" for "0lt |x| lt sqrt2 , then x is equal to

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

Find the general solution : sec^2 2x=1-tan2x

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

    Text Solution

    |

  2. If sqrt3sin theta+costhetagt0, then theta lies in the interval

    Text Solution

    |

  3. Let 0lt x lepi//4, (sec 2x-tan2x) equals

    Text Solution

    |

  4. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  5. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  6. If (cos theta)/(a)=(sin theta)/(b), then (a)/(sec2theta)+(b)/(cosec2th...

    Text Solution

    |

  7. If k(1)=tan 27 theta-tan theta and k(2)=(sin theta)/(cos 3 theta)+(sin...

    Text Solution

    |

  8. Find the number of integral values of k for which the equation 7 cos x...

    Text Solution

    |

  9. If A=sin^(2)theta+cos^(4)theta, then find all real values of theta.

    Text Solution

    |

  10. The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

    Text Solution

    |

  11. The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

    Text Solution

    |

  12. If A+B+C=pi then sin2A+sin2B+sin2C=

    Text Solution

    |

  13. The expression tan^2alpha+cot^2alpha is

    Text Solution

    |

  14. Given alpha+beta+gamma=pi, prove that sin^2alpha+sin^2beta-sin^2gamma=...

    Text Solution

    |

  15. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  16. The roots of the equation 4x^(2)-2sqrt(5)x+1=0 are

    Text Solution

    |

  17. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  18. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |

  19. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  20. If cos(theta + phi) = m cos (theta - phi), then tan theta is equal to ...

    Text Solution

    |