Home
Class 12
MATHS
The value of sin\ pi/16 sin\ (3pi)/16 si...

The value of `sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16` is

A

`(sqrt2)/(16)`

B

`1/8`

C

`1/6`

D

`(sqrt2)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin \frac{\pi}{16} \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \sin \frac{7\pi}{16} \), we can follow these steps: ### Step 1: Group the Sine Terms We can group the sine terms as follows: \[ \sin \frac{\pi}{16} \sin \frac{7\pi}{16} \quad \text{and} \quad \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \] ### Step 2: Use the Product-to-Sum Formula Using the product-to-sum formula: \[ 2 \sin a \sin b = \cos(a - b) - \cos(a + b) \] we can apply this to both pairs. #### For \( \sin \frac{\pi}{16} \sin \frac{7\pi}{16} \): Let \( a = \frac{\pi}{16} \) and \( b = \frac{7\pi}{16} \): \[ 2 \sin \frac{\pi}{16} \sin \frac{7\pi}{16} = \cos\left(\frac{7\pi}{16} - \frac{\pi}{16}\right) - \cos\left(\frac{7\pi}{16} + \frac{\pi}{16}\right) \] Calculating the angles: \[ = \cos\left(\frac{6\pi}{16}\right) - \cos\left(\frac{8\pi}{16}\right) = \cos\left(\frac{3\pi}{8}\right) - \cos\left(\frac{\pi}{2}\right) \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \): \[ = \cos\left(\frac{3\pi}{8}\right) \] #### For \( \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \): Let \( a = \frac{3\pi}{16} \) and \( b = \frac{5\pi}{16} \): \[ 2 \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} = \cos\left(\frac{5\pi}{16} - \frac{3\pi}{16}\right) - \cos\left(\frac{5\pi}{16} + \frac{3\pi}{16}\right) \] Calculating the angles: \[ = \cos\left(\frac{2\pi}{16}\right) - \cos\left(\frac{8\pi}{16}\right) = \cos\left(\frac{\pi}{8}\right) - \cos\left(\frac{\pi}{2}\right) \] Again, since \( \cos\left(\frac{\pi}{2}\right) = 0 \): \[ = \cos\left(\frac{\pi}{8}\right) \] ### Step 3: Combine the Results Now we have: \[ \sin \frac{\pi}{16} \sin \frac{7\pi}{16} \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} = \frac{1}{4} \cos\left(\frac{3\pi}{8}\right) \cos\left(\frac{\pi}{8}\right) \] ### Step 4: Use the Product-to-Sum Formula Again Using the product-to-sum formula again on \( \cos\left(\frac{3\pi}{8}\right) \cos\left(\frac{\pi}{8}\right) \): \[ 2 \cos a \cos b = \cos(a + b) + \cos(a - b) \] Let \( a = \frac{3\pi}{8} \) and \( b = \frac{\pi}{8} \): \[ 2 \cos\left(\frac{3\pi}{8}\right) \cos\left(\frac{\pi}{8}\right) = \cos\left(\frac{4\pi}{8}\right) + \cos\left(\frac{2\pi}{8}\right) = \cos\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{4}\right) \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \): \[ = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Step 5: Final Calculation Thus, we have: \[ \sin \frac{\pi}{16} \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \sin \frac{7\pi}{16} = \frac{1}{8} \cdot \frac{1}{\sqrt{2}} = \frac{1}{8\sqrt{2}} \] To rationalize the denominator: \[ = \frac{\sqrt{2}}{16} \] ### Final Answer The value of \( \sin \frac{\pi}{16} \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \sin \frac{7\pi}{16} \) is: \[ \frac{\sqrt{2}}{16} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)/(14)sin(11pi)/(14)sin(13pi)/(14) is equal to___________

The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin(11pi/14)sin(13pi/14) is equal to___________

The value of sin^(-1)(sin((3pi)/(5)))

The value of sin pi/n + sin (3pi)/n+ sin (5pi)/n+... to n terms is equal to

Let f(x) = ax^2 + bx + c where a,b,c are integers. If sin\ pi/7 * sin\ (3pi)/7 + sin\ (3pi)/7 * sin\ (5pi)/7 + sin\ (5pi)/7 * sin\ (pi)/7=f(cos\ (pi)/7) . then find the value of f(2):

Find the value of cos^2. pi/16+cos^2. (3pi)/16+cos^2. (5pi)/16+cos^2. (7pi)/16 .

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If A=sin^(2)theta+cos^(4)theta, then find all real values of theta.

    Text Solution

    |

  2. The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

    Text Solution

    |

  3. The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

    Text Solution

    |

  4. If A+B+C=pi then sin2A+sin2B+sin2C=

    Text Solution

    |

  5. The expression tan^2alpha+cot^2alpha is

    Text Solution

    |

  6. Given alpha+beta+gamma=pi, prove that sin^2alpha+sin^2beta-sin^2gamma=...

    Text Solution

    |

  7. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  8. The roots of the equation 4x^(2)-2sqrt(5)x+1=0 are

    Text Solution

    |

  9. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  10. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |

  11. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  12. If cos(theta + phi) = m cos (theta - phi), then tan theta is equal to ...

    Text Solution

    |

  13. alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != ...

    Text Solution

    |

  14. Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))/...

    Text Solution

    |

  15. cos^(4)theta-sin^(4)theta is equal to

    Text Solution

    |

  16. If tanalpha=(m)/(m+1) and tanbeta=(1)/(2m+1), then alpha+beta is equa...

    Text Solution

    |

  17. Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

    Text Solution

    |

  18. If cos theta-4sintheta=1, the sintheta+4costheta=

    Text Solution

    |

  19. If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

    Text Solution

    |

  20. If A+B=C, then cos^(2)A+cos^(2)B+cos^(2)C-2cosAcosBcosC=

    Text Solution

    |