Home
Class 12
MATHS
alpha & beta are solutions of a cos th...

`alpha & beta ` are solutions of `a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta)` Then `tan((alpha+beta)/2)=?`

A

`b//a`

B

`c//a`

C

`a//b`

D

`c//b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left(\frac{\alpha + \beta}{2}\right) \) given that \( \alpha \) and \( \beta \) are solutions of the equation \( a \cos \theta + b \sin \theta = c \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ a \cos \theta + b \sin \theta = c \] 2. **Rearrange the equation**: \[ a \cos \theta = c - b \sin \theta \] 3. **Square both sides**: \[ a^2 \cos^2 \theta = (c - b \sin \theta)^2 \] 4. **Expand the right side**: \[ a^2 \cos^2 \theta = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] 5. **Use the identity \( \cos^2 \theta = 1 - \sin^2 \theta \)**: \[ a^2 (1 - \sin^2 \theta) = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] 6. **Rearranging gives**: \[ a^2 - a^2 \sin^2 \theta = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] 7. **Combine like terms**: \[ (a^2 + b^2) \sin^2 \theta - 2bc \sin \theta + (c^2 - a^2) = 0 \] 8. **Identify coefficients for the quadratic equation**: - Coefficient of \( \sin^2 \theta \): \( a^2 + b^2 \) - Coefficient of \( \sin \theta \): \( -2bc \) - Constant term: \( c^2 - a^2 \) 9. **Using the sum of roots formula**: From the quadratic equation \( Ax^2 + Bx + C = 0 \), the sum of the roots \( \alpha + \beta \) can be given by: \[ \sin \alpha + \sin \beta = \frac{-B}{A} = \frac{2bc}{a^2 + b^2} \] 10. **Repeat the process for \( b \sin \theta = c - a \cos \theta \)**: \[ b \sin \theta = c - a \cos \theta \] Squaring and rearranging gives: \[ (b^2 + a^2) \cos^2 \theta - 2ac \cos \theta + (c^2 - b^2) = 0 \] From this, we find: \[ \cos \alpha + \cos \beta = \frac{2ac}{a^2 + b^2} \] 11. **Using the identities for sum of angles**: \[ \frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \tan\left(\frac{\alpha + \beta}{2}\right) \] 12. **Substituting the values**: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\frac{2bc}{a^2 + b^2}}{\frac{2ac}{a^2 + b^2}} = \frac{bc}{ac} = \frac{b}{a} \] 13. **Final Result**: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{b}{a} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the solution of a cos theta + b sin theta = c , then

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that tan alpha = 2 tan beta.

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  2. The roots of the equation 4x^(2)-2sqrt(5)x+1=0 are

    Text Solution

    |

  3. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  4. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |

  5. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  6. If cos(theta + phi) = m cos (theta - phi), then tan theta is equal to ...

    Text Solution

    |

  7. alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != ...

    Text Solution

    |

  8. Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))/...

    Text Solution

    |

  9. cos^(4)theta-sin^(4)theta is equal to

    Text Solution

    |

  10. If tanalpha=(m)/(m+1) and tanbeta=(1)/(2m+1), then alpha+beta is equa...

    Text Solution

    |

  11. Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

    Text Solution

    |

  12. If cos theta-4sintheta=1, the sintheta+4costheta=

    Text Solution

    |

  13. If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

    Text Solution

    |

  14. If A+B=C, then cos^(2)A+cos^(2)B+cos^(2)C-2cosAcosBcosC=

    Text Solution

    |

  15. If 5cosx+12cosy=13, then the maximum value of 5sinx+12siny is (...

    Text Solution

    |

  16. If x=tan15^(@),y=cosec75^(@),z=4sin18^(@)

    Text Solution

    |

  17. For all values of theta,3-costheta+cos(theta+(pi)/(3)) lie in the inte...

    Text Solution

    |

  18. (tan8 0^(@)-tan1 0^(@))/tan70^(@)

    Text Solution

    |

  19. If sinA+sinB=sqrt3(cosB-cosA),then sin3A+sin3B=

    Text Solution

    |

  20. If alpha+beta+gamma=2 theta,then cos theta + cos(theta - alpha) + cos(...

    Text Solution

    |