Home
Class 12
MATHS
If x=tan15^(@),y=cosec75^(@),z=4sin18^(@...

If `x=tan15^(@),y=cosec75^(@),z=4sin18^(@)`

A

`xltyltz`

B

`yltzltx`

C

`zltxlty`

D

`xltzlty`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the values of \( x \), \( y \), and \( z \) given the definitions: 1. \( x = \tan 15^\circ \) 2. \( y = \csc 75^\circ \) 3. \( z = 4 \sin 18^\circ \) Let's solve each part step by step. ### Step 1: Calculate \( x = \tan 15^\circ \) Using the tangent subtraction formula: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Let \( A = 45^\circ \) and \( B = 30^\circ \): \[ \tan 15^\circ = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} \] We know: \[ \tan 45^\circ = 1, \quad \tan 30^\circ = \frac{1}{\sqrt{3}} \] Substituting these values: \[ \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3} - 1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] Thus, \[ x = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Step 2: Calculate \( y = \csc 75^\circ \) Using the cosecant identity: \[ \csc \theta = \frac{1}{\sin \theta} \] We can express \( \sin 75^\circ \) using the sine addition formula: \[ \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \] Substituting the known values: \[ \sin 75^\circ = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] Thus, \[ y = \csc 75^\circ = \frac{1}{\sin 75^\circ} = \frac{2\sqrt{2}}{\sqrt{3} + 1} \] ### Step 3: Calculate \( z = 4 \sin 18^\circ \) Using the known value: \[ \sin 18^\circ = \frac{\sqrt{5} - 1}{4} \] Thus, \[ z = 4 \sin 18^\circ = 4 \cdot \frac{\sqrt{5} - 1}{4} = \sqrt{5} - 1 \] ### Step 4: Compare \( x \), \( y \), and \( z \) Now we have: 1. \( x = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \) 2. \( y = \frac{2\sqrt{2}}{\sqrt{3} + 1} \) 3. \( z = \sqrt{5} - 1 \) #### Approximate Values: - \( \sqrt{3} \approx 1.732 \) - \( \sqrt{2} \approx 1.414 \) - \( \sqrt{5} \approx 2.236 \) Calculating approximate values: 1. \( x \approx \frac{1.732 - 1}{1.732 + 1} = \frac{0.732}{2.732} \approx 0.268 \) 2. \( y \approx \frac{2 \cdot 1.414}{1.732 + 1} = \frac{2.828}{2.732} \approx 1.037 \) 3. \( z \approx 2.236 - 1 = 1.236 \) ### Conclusion: From the approximations, we can see: \[ x < y < z \quad \text{(i.e., } 0.268 < 1.037 < 1.236\text{)} \] Thus, the correct option is: **Option 1: \( x < y < z \)**
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Evaluate: sin 15^(@)cos 15^(@)-cos 75^(@)sin75^(@)

Simplify (sin75^(@)-sin15^(@))/(cos75^(@)+cos15^(@))

Simplyify (sin75^(@)-sin15^(@))/(cos75^(@)+cos15^(@))

Show that : cos15^(@)cos35^(@)"cosec" 55^(@)sin30^(@)"cosec"75^(@)=(1)/(2)

(sin 75^(@) - sin 15 ^(@))/( cos 75^(@) + cos 15 ^(@)) = (1)/(sqrt3)

Show that: tan 10^(@)tan 15^(@) tan 75^(@)tan 80^(@)=1

Show that : (i) tan 10^(@) tan 15^(@) tan 75^(@) tan 80^(@) = 1 (ii) sin 42^(@) sec 48^(@) + cos 42^(@) "cosec 48"^(@) = 2

If 4 sin^(2) x + cosec^(2)x, a , sin^(2)y+4 cosec^(2)y are in AP, then minimum value of (2a) is

Evaluate : (cos 75^(@))/ (sin 15^(@)) + (sin 12^(@))/ (cos 78^(@)) - (cos 18^(@))/ (sin 72^(@))

Computer sin 75^(@) , cos 75^(@) and tan 15 ^(@), from the functions of 30^(@) and 45 ^(@)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  2. The roots of the equation 4x^(2)-2sqrt(5)x+1=0 are

    Text Solution

    |

  3. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  4. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |

  5. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  6. If cos(theta + phi) = m cos (theta - phi), then tan theta is equal to ...

    Text Solution

    |

  7. alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != ...

    Text Solution

    |

  8. Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))/...

    Text Solution

    |

  9. cos^(4)theta-sin^(4)theta is equal to

    Text Solution

    |

  10. If tanalpha=(m)/(m+1) and tanbeta=(1)/(2m+1), then alpha+beta is equa...

    Text Solution

    |

  11. Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

    Text Solution

    |

  12. If cos theta-4sintheta=1, the sintheta+4costheta=

    Text Solution

    |

  13. If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

    Text Solution

    |

  14. If A+B=C, then cos^(2)A+cos^(2)B+cos^(2)C-2cosAcosBcosC=

    Text Solution

    |

  15. If 5cosx+12cosy=13, then the maximum value of 5sinx+12siny is (...

    Text Solution

    |

  16. If x=tan15^(@),y=cosec75^(@),z=4sin18^(@)

    Text Solution

    |

  17. For all values of theta,3-costheta+cos(theta+(pi)/(3)) lie in the inte...

    Text Solution

    |

  18. (tan8 0^(@)-tan1 0^(@))/tan70^(@)

    Text Solution

    |

  19. If sinA+sinB=sqrt3(cosB-cosA),then sin3A+sin3B=

    Text Solution

    |

  20. If alpha+beta+gamma=2 theta,then cos theta + cos(theta - alpha) + cos(...

    Text Solution

    |