Home
Class 12
MATHS
(tan8 0^(@)-tan1 0^(@))/tan70^(@)...

`(tan8 0^(@)-tan1 0^(@))/tan70^(@) `

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\tan 80^\circ - \tan 10^\circ) / \tan 70^\circ\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ} \] ### Step 2: Use the identity for tangent Recall that \(\tan(90^\circ - x) = \cot x\). Thus, we can rewrite \(\tan 80^\circ\) as: \[ \tan 80^\circ = \cot 10^\circ \] So, we can substitute this into our expression: \[ \frac{\cot 10^\circ - \tan 10^\circ}{\tan 70^\circ} \] ### Step 3: Rewrite \(\tan 70^\circ\) Using the same identity, we can also express \(\tan 70^\circ\) as: \[ \tan 70^\circ = \cot 20^\circ \] Thus, the expression becomes: \[ \frac{\cot 10^\circ - \tan 10^\circ}{\cot 20^\circ} \] ### Step 4: Convert cotangent to tangent We know that \(\cot x = \frac{1}{\tan x}\). Therefore: \[ \cot 10^\circ = \frac{1}{\tan 10^\circ} \] Substituting this into the expression gives: \[ \frac{\frac{1}{\tan 10^\circ} - \tan 10^\circ}{\cot 20^\circ} \] ### Step 5: Simplify the numerator To simplify the numerator \(\frac{1}{\tan 10^\circ} - \tan 10^\circ\), we can find a common denominator: \[ \frac{1 - \tan^2 10^\circ}{\tan 10^\circ} \] Thus, the expression now becomes: \[ \frac{\frac{1 - \tan^2 10^\circ}{\tan 10^\circ}}{\cot 20^\circ} \] ### Step 6: Substitute \(\cot 20^\circ\) Since \(\cot 20^\circ = \frac{1}{\tan 20^\circ}\), we rewrite the expression: \[ \frac{1 - \tan^2 10^\circ}{\tan 10^\circ} \cdot \tan 20^\circ \] ### Step 7: Use the double angle formula Using the double angle formula for tangent, we know: \[ \tan 20^\circ = \frac{2 \tan 10^\circ}{1 - \tan^2 10^\circ} \] Substituting this back into our expression gives: \[ \frac{1 - \tan^2 10^\circ}{\tan 10^\circ} \cdot \frac{2 \tan 10^\circ}{1 - \tan^2 10^\circ} \] ### Step 8: Simplify the expression The \((1 - \tan^2 10^\circ)\) terms cancel out: \[ 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Evaluate without using trigonometric tables : tan 20^(@) tan 40^(@) tan 50^(@) tan 70^(@)

Evaluate without using trigonometric tables : tan 20.tan 40^(@) tan 50^(@) tan 70^(@)

If 2a=2tan10^(@)+tan50^(@), 2b=tan20^(@)+tan50^(@) 2c=2tan10^(@)+tan70^(@), 2d=tan20^(@)+tan70^(@) Then which of the following is/are correct ?

Prove that: tan10^(@)tan50^(@)+tan50^(@)tan70^(@)+tan70^(@)tan170^(@)=3

The terms tan80^(@), tan70^(@)+tan10^(@) and tan10^(@) are in

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

Evaluate: (cot 54^(@))/(tan 36^(@))+(tan 20^(@))/(cot 70^(@))-2

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  2. The roots of the equation 4x^(2)-2sqrt(5)x+1=0 are

    Text Solution

    |

  3. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  4. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |

  5. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  6. If cos(theta + phi) = m cos (theta - phi), then tan theta is equal to ...

    Text Solution

    |

  7. alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != ...

    Text Solution

    |

  8. Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))/...

    Text Solution

    |

  9. cos^(4)theta-sin^(4)theta is equal to

    Text Solution

    |

  10. If tanalpha=(m)/(m+1) and tanbeta=(1)/(2m+1), then alpha+beta is equa...

    Text Solution

    |

  11. Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

    Text Solution

    |

  12. If cos theta-4sintheta=1, the sintheta+4costheta=

    Text Solution

    |

  13. If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

    Text Solution

    |

  14. If A+B=C, then cos^(2)A+cos^(2)B+cos^(2)C-2cosAcosBcosC=

    Text Solution

    |

  15. If 5cosx+12cosy=13, then the maximum value of 5sinx+12siny is (...

    Text Solution

    |

  16. If x=tan15^(@),y=cosec75^(@),z=4sin18^(@)

    Text Solution

    |

  17. For all values of theta,3-costheta+cos(theta+(pi)/(3)) lie in the inte...

    Text Solution

    |

  18. (tan8 0^(@)-tan1 0^(@))/tan70^(@)

    Text Solution

    |

  19. If sinA+sinB=sqrt3(cosB-cosA),then sin3A+sin3B=

    Text Solution

    |

  20. If alpha+beta+gamma=2 theta,then cos theta + cos(theta - alpha) + cos(...

    Text Solution

    |