Home
Class 12
MATHS
If alpha+beta+gamma=2 theta,then cos the...

If `alpha+beta+gamma=2 theta`,then `cos theta + cos(theta - alpha) + cos(theta - beta) + cos(theta - gamma)` =

A

`4sin""(alpha)/(2)sin""(beta)/(2)sin""(gamma)/(2)

B

`4cos""(alpha)/(2)cos""(beta)/(2)cos""(gamma)/(2)

C

`4sin""(alpha)/(2)sin""(beta)/(2)sin""(gamma)/(2)

D

`4sinalphasinbetasingamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \cos \theta + \cos(\theta - \alpha) + \cos(\theta - \beta) + \cos(\theta - \gamma) \) given that \( \alpha + \beta + \gamma = 2\theta \). ### Step-by-Step Solution: 1. **Start with the given expression:** \[ E = \cos \theta + \cos(\theta - \alpha) + \cos(\theta - \beta) + \cos(\theta - \gamma) \] 2. **Use the cosine addition formula:** We can group the terms in pairs and apply the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] 3. **Group the first two terms:** Let's first group \( \cos \theta \) and \( \cos(\theta - \alpha) \): \[ \cos \theta + \cos(\theta - \alpha) = 2 \cos\left(\frac{\theta + (\theta - \alpha)}{2}\right) \cos\left(\frac{\theta - (\theta - \alpha)}{2}\right) \] Simplifying this gives: \[ = 2 \cos\left(\theta - \frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right) \] 4. **Group the next two terms:** Now group \( \cos(\theta - \beta) \) and \( \cos(\theta - \gamma) \): \[ \cos(\theta - \beta) + \cos(\theta - \gamma) = 2 \cos\left(\frac{(\theta - \beta) + (\theta - \gamma)}{2}\right) \cos\left(\frac{(\theta - \beta) - (\theta - \gamma)}{2}\right) \] Simplifying this gives: \[ = 2 \cos\left(\theta - \frac{\beta + \gamma}{2}\right) \cos\left(\frac{\gamma - \beta}{2}\right) \] 5. **Combine the results:** Now we can combine the results from steps 3 and 4: \[ E = 2 \cos\left(\theta - \frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right) + 2 \cos\left(\theta - \frac{\beta + \gamma}{2}\right) \cos\left(\frac{\gamma - \beta}{2}\right) \] 6. **Use the identity \( \alpha + \beta + \gamma = 2\theta \):** Substitute \( \beta + \gamma = 2\theta - \alpha \): \[ E = 2 \cos\left(\theta - \frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right) + 2 \cos\left(\theta - \frac{2\theta - \alpha}{2}\right) \cos\left(\frac{\gamma - \beta}{2}\right) \] 7. **Final simplification:** After simplification, we find: \[ E = 4 \cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) \cos\left(\frac{\gamma}{2}\right) \] ### Final Result: Thus, the value of the expression \( \cos \theta + \cos(\theta - \alpha) + \cos(\theta - \beta) + \cos(\theta - \gamma) \) is: \[ \boxed{4 \cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) \cos\left(\frac{\gamma}{2}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If alpha +beta + gamma = 2theta then costheta+ cos(theta-alpha)+cos(theta-beta)+ cos(theta-gamma)

If alpha+beta+gamma= 2theta., then costheta+ cos(theta-alpha)+ cos(theta-beta)+cos(theta-gamma)

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

Simplify be reducing to a single term : cos (theta + alpha ) cos ( theta - alpha ) - sin ( theta + alpha ) sin (theta - alpha).

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha/2) =

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha)/2 =

If cos alpha + cos beta + cos gamma = 0 and also sin alpha + sin beta + sin gamma= 0, then prove that: cos 3 alpha + cos 3beta + cos 3gamma = 3 cos (alpha + beta + gamma)

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. If tan((alphapi)/(4))=cot((betapi)/(4)), then

    Text Solution

    |

  2. The roots of the equation 4x^(2)-2sqrt(5)x+1=0 are

    Text Solution

    |

  3. The radius of the circle whose are of length 15\ pi cm makes an angle ...

    Text Solution

    |

  4. If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

    Text Solution

    |

  5. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  6. If cos(theta + phi) = m cos (theta - phi), then tan theta is equal to ...

    Text Solution

    |

  7. alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != ...

    Text Solution

    |

  8. Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))/...

    Text Solution

    |

  9. cos^(4)theta-sin^(4)theta is equal to

    Text Solution

    |

  10. If tanalpha=(m)/(m+1) and tanbeta=(1)/(2m+1), then alpha+beta is equa...

    Text Solution

    |

  11. Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

    Text Solution

    |

  12. If cos theta-4sintheta=1, the sintheta+4costheta=

    Text Solution

    |

  13. If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

    Text Solution

    |

  14. If A+B=C, then cos^(2)A+cos^(2)B+cos^(2)C-2cosAcosBcosC=

    Text Solution

    |

  15. If 5cosx+12cosy=13, then the maximum value of 5sinx+12siny is (...

    Text Solution

    |

  16. If x=tan15^(@),y=cosec75^(@),z=4sin18^(@)

    Text Solution

    |

  17. For all values of theta,3-costheta+cos(theta+(pi)/(3)) lie in the inte...

    Text Solution

    |

  18. (tan8 0^(@)-tan1 0^(@))/tan70^(@)

    Text Solution

    |

  19. If sinA+sinB=sqrt3(cosB-cosA),then sin3A+sin3B=

    Text Solution

    |

  20. If alpha+beta+gamma=2 theta,then cos theta + cos(theta - alpha) + cos(...

    Text Solution

    |