Home
Class 12
MATHS
Let RS be the diameter of the circle x^(...

Let RS be the diameter of the circle `x^(2)+y^(2)=1`, where S is the point (1,0). Let P be a variable point (other than R and S ) on the circle and tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersects a line drawn through Q parallel to RS at point E. Then the locus of E passes through the point (s)

A

`y^(2)=2x`

B

`y^(2)=1-2x`

C

`2x=y^(2)-1`

D

`y^(2)=1-x`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `P(cos theta, sin theta)` be a point on the circle `x^(2)+y^(2)=1`. Then, the equations of the tangent and the normal to the circle at `P(cos theta, sin theta)` are

`x cos theta + y sin theta = 1 ...(i)`
and, `x sin theta - y cos theta = 0 ...(ii)`
The tangent to the circle at S(1, 0) is x=1. ...(iii)
Lines (i) and (iii) intersect at Q `(1, (1-cos theta)/(sin theta))`.
The equation of the line through Q parallel to RS is
`y=(1-cos theta)/(sin theta)`. or, `y=tan (theta)/(2)`. This line intersects the normal at P at
point `E((tan theta//2)/(tan theta), tan (theta)/(2))`. Let the coordinates of E be (h, k).
Then,
`h=(tan theta//2)/(tan theta) and k = tan. (theta)/(2)`
`rArr 2h=1 - tan^(2) (theta)/(2) and k = tan. (theta)/(2) rArr 2h = 1 - k^(2)`
Hence, the locus of E (h, k) is `2x=1-y^(2) or, y^(2)=1 - 2x`.
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section-I (Solved MCQs)|1 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CARTESIAN PRODUCT OF SETS AND RELATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

A tangent to the circle x^(2)+y^(2)=1 through the point (0, 5) cuts the circle x^(2)+y^(2)=4 at P and Q. If the tangents to the circle x^(2)+y^(2)=4 at P and Q meet at R, then the coordinates of R are

A variable plane at constant distance p form the origin meets the coordinate axes at P,Q, and R. Find the locus of the point of intersection of planes drawn through P,Q, r and parallel to the coordinate planes.

If the tangent to the ellipse x^2+2y^2=1 at point P(1/(sqrt(2)),1/2) meets the auxiliary circle at point R and Q , then find the points of intersection of tangents to the circle at Q and Rdot

If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axes at distinct points P and Q, then the locus of the mid-point of PQ is :

The tangent at any point to the circle x^(2)+y^(2)=r^(2) meets the coordinate axes at A and B. If the lines drawn parallel to axes through A and B meet at P then locus of P is

AB is the diameter of a circle with centre O. A line PQ touches the given circle at point R and cuts the tangents to the circle through A and B at points P and Q respectively. Prove that /_POQ=90^(@)

Two parallel tangents of a circle meet a third tangent at points P and Q. Prove that PQ subtends a right angle at the centre.

If the line y=2-x is tangent to the circle S at the point P(1,1) and circle S is orthogonal to the circle x^2+y^2+2x+2y-2=0 then find the length of tangent drawn from the point (2,2) to the circle S

Two circles intersects in points P and Q. A secant passing through P intersects the circles in A and B respectively. Tangents to the circles at A and B intersect at T. Prove that the A,Q,B and T lie on a circle.

A tangent is drawn to the circle 2(x^(2)+y^(2))-3x+4y=0 and it touches the circle at point A. If the tangent passes through the point P(2, 1),then PA=

OBJECTIVE RD SHARMA ENGLISH-CIRCLES-Section I - Solved Mcqs
  1. If the lines a1x+b1y+c1=0 and a2x+b2y+c2=0 cut the coordinae axes at c...

    Text Solution

    |

  2. Tangents drawn from the point P(1,8) to the circle x^(2)+y^(2)-6x-4y-1...

    Text Solution

    |

  3. A variable circle passes through the point A(a ,b) and touches the x-a...

    Text Solution

    |

  4. The centres of two circles C(1)andC(2) each of unit radius are at a di...

    Text Solution

    |

  5. Three distinct points A, B and C are given in the 2aedimensional coord...

    Text Solution

    |

  6. In DeltaABC, equation of side BC is x+y-6=0, also the circumcentre and...

    Text Solution

    |

  7. The locus of the mid-point of the chord of contact of tangents drawn f...

    Text Solution

    |

  8. A tangent PT is drawn to the circle x^(2)+y^(2)=4 at the point P( sqrt...

    Text Solution

    |

  9. A common tangent to the circles x^(2)+y^(2)=4 and (x-3)^(2)+y^(2)=1, i...

    Text Solution

    |

  10. If the line y=mx +1 meets the circle x^(2)+y^(2)+3x=0 in two points eq...

    Text Solution

    |

  11. If three distinct point A, B, C are given in the 2-dimensional coordi...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Tangents PA and PB are drawn to the circle x^2 +y^2=8 from any arbitra...

    Text Solution

    |

  14. Given two circles x^2 +y^2+3sqrt(2)(x+y)=0 and x^2 +y^2 +5sqrt(2)(x+y)...

    Text Solution

    |

  15. Let RS be the diameter of the circle x^(2)+y^(2)=1, where S is the poi...

    Text Solution

    |

  16. The circle C1 : x^2 + y^2 = 3, with center at O, intersects the parabo...

    Text Solution

    |

  17. A voltmeter of variable ranges 3V, 15V, 150 V is to designed by connec...

    Text Solution

    |

  18. In example 104, area of DeltaOR(2)R(3), in square units, is

    Text Solution

    |

  19. In example 104, area of DeltaPQ(2)Q(3), in square units is

    Text Solution

    |

  20. For how many values of p, the circle x^(2)+y^(2)+2x+4y-p=0 and the coo...

    Text Solution

    |