Home
Class 12
MATHS
If C(1),C(2),C(3),... is a sequence of c...

If `C_(1),C_(2),C_(3),...` is a sequence of circles such that `C_(n+1)` is the director circle of `C_(n)`. If the radius of `C_(1)` is 'a', then the area bounded by the circles `C_(n)` and `C_(n+1)`, is

A

`2^(n)pi a^(2)`

B

`2^(2n-n) pia^(2)`

C

`2^(n-1)pi a^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CARTESIAN PRODUCT OF SETS AND RELATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If C_(1): x^(2)+y^(2) =(3+2sqrt(2))^(2) be a circle. PA and PB are pair of tangents on C_(1) where P is any point on the director circle of C_(1) , then the radius of the smallest circle which touches C_(1) externally and also the two tangents PA and PB is

Let C_1, C_2, ,C_n be a sequence of concentric circle. The nth circle has the radius n and it has n openings. A points P starts travelling on the smallest circle C_1 and leaves it at an opening along the normal at the point of opening to reach the next circle C_2 . Then it moves on the second circle C_2 and leaves it likewise to reach the third circle C_3 and so on. Find the total number of different path in which the point can come out of nth circle.

If C_1,C_2,a n dC_3 belong to a family of circles through the points (x_1,y_2)a n d(x_2, y_2) prove that the ratio of the length of the tangents from any point on C_1 to the circles C_2a n dC_3 is constant.

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

Let a_(1),a_(2),a_(3)"……." be an arithmetic progression and b_(1), b_(2), b_(3), "……." be a geometric progression sequence c_(1),c_(2),c_(3,"…." is such that c_(n)= a_(n) + b_(n) AA n in N . Suppose c_(1) = 1, c_(2) = 4, c_(3) = 15 and c_(4) = 2 . The value of sum of sum_(i = 1)^(20) a_(i) is equal to "(a) 480 (b) 770 (c) 960 (d) 1040"

If C_(0),C_(1),C_(2)…….,C_(n) are the combinatorial coefficient in the expansion of (1+x)^n, n, ne N , then prove that following C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1) C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1) C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n (C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!) 1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

OBJECTIVE RD SHARMA ENGLISH-CIRCLES-Exercise
  1. The Cartesian equation of the plane vecr=(1+lambda-mu)hati+(2-lambda...

    Text Solution

    |

  2. if y = mx is a chord of a circle of radius a and the diameter of the c...

    Text Solution

    |

  3. 18. The straight lines joining the origin to the points of intersectio...

    Text Solution

    |

  4. The locus of the point of intersection of the tangents to the circle x...

    Text Solution

    |

  5. If the chrod of contact of tangents from a point (x(1),y(1)) to the ci...

    Text Solution

    |

  6. The circle S(1) with centre C(1) ( a(1), b(1)) and radius r(1) touche...

    Text Solution

    |

  7. Two vertices of an equilateral triangle are (-1,0) and (1, 0), and its...

    Text Solution

    |

  8. If the sum of the coefficient in the expansion of (alpha^2x^2-2alphax+...

    Text Solution

    |

  9. Tangents PT1, and PT2, are drawn from a point P to the circle x^2 +y^2...

    Text Solution

    |

  10. The value of theta in [0, 2pi] so that circle x^(2)+y^(2)+2 (sin alpha...

    Text Solution

    |

  11. The value of alpha in [0,2pi] so that x^(2)+y^(2)+2sqrt(sin alpha )...

    Text Solution

    |

  12. If in a DeltaABC (whose circumcentre is at the origin), a leq sinA ,...

    Text Solution

    |

  13. If P is a point such that the ratio of the squares of the lengths of t...

    Text Solution

    |

  14. If C(1),C(2),C(3),... is a sequence of circles such that C(n+1) is the...

    Text Solution

    |

  15. If r1a n dr2 are the radii of the smallest and the largest circles, re...

    Text Solution

    |

  16. The radical centre of three circles described on the three sides x+y=5...

    Text Solution

    |

  17. If theta is the angle between the two radii (one to each circle) drawn...

    Text Solution

    |

  18. The number of rational point(s) [a point (a, b) is called rational, if...

    Text Solution

    |

  19. The point ( [ P + 1 ] , [ P ] ) (where [.] denotes the greatest in...

    Text Solution

    |

  20. The circles ax^(2)+ay^(2)+2g(1)x+2f(1)y+c(1)=0" and "bx^(2)+by^(2)+2g(...

    Text Solution

    |