Home
Class 12
MATHS
If x lt 0 then tan^(-1)(1/x) equals...

If `x lt 0` then `tan^(-1)(1/x)` equals

A

`cot^(-1)x`

B

`-cot^(-1)x`

C

`-pi + cot^(-1)x`

D

`-pi -cot^(-1) x `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1}\left(\frac{1}{x}\right) \) given that \( x < 0 \). ### Step-by-Step Solution: 1. **Understanding the Function**: We start with the expression \( \tan^{-1}\left(\frac{1}{x}\right) \). Since \( x < 0 \), \( \frac{1}{x} \) will also be negative. 2. **Using the Identity**: We can use the identity that relates the tangent and cotangent functions: \[ \tan^{-1}(y) = \cot^{-1}\left(\frac{1}{y}\right) \] Therefore, we can write: \[ \tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}(x) \] 3. **Considering the Sign**: Since \( x < 0 \), we have to consider the properties of the inverse cotangent function. The cotangent function is defined as: \[ \cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y) \] However, for negative values, we can also express it as: \[ \cot^{-1}(-y) = \pi - \cot^{-1}(y) \] Thus, we can write: \[ \cot^{-1}(x) = \pi - \cot^{-1}(-x) \] 4. **Final Expression**: Since \( x < 0 \), we can express \( \tan^{-1}\left(\frac{1}{x}\right) \) in terms of \( \cot^{-1}(x) \): \[ \tan^{-1}\left(\frac{1}{x}\right) = \pi - \cot^{-1}(-x) \] But since \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \), we can simplify: \[ \tan^{-1}\left(\frac{1}{x}\right) = -\frac{\pi}{2} + \cot^{-1}(x) \] 5. **Conclusion**: Therefore, the final result is: \[ \tan^{-1}\left(\frac{1}{x}\right) = -\frac{\pi}{2} + \cot^{-1}(x) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If -1lt x lt 0 then tan^(-1) x equals

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If x<0,t h e ntan^(-1)x is equal to

If -1 lt x lt 0 , then cos^(-1) x is equal to

If -1< x < 0 , then cos^(-1)x is equal to (a) sec^(-1)(1/ x) (b) pi-sin^(-1)sqrt(1+x^2) (c) pi+tan^(-1)(x/(sqrt(1-x^2))) (d) cot^(-1)(x/(sqrt(1-x^2))) .

If xlt0 , then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

Lt_(x rarr oo) x tan^(-1)"" (2)/(x) equal to

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to