Home
Class 12
MATHS
If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) ...

If `sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0` then x belongs to the interval

A

`[-1,1]`

B

`[-1//sqrt(2),1sqrt(2)]`

C

`[-1,-1//sqrt(2)]`

D

`[1//sqrt(2),1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(2x\sqrt{1-x^2}) - 2\sin^{-1}(x) = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation: \[ \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x) \] ### Step 2: Letting \( x = \sin(\theta) \) Let \( x = \sin(\theta) \). Then, we have: \[ \sin^{-1}(x) = \theta \] ### Step 3: Substituting into the Equation Substituting \( x = \sin(\theta) \) into the equation gives: \[ \sin^{-1}(2\sin(\theta)\sqrt{1-\sin^2(\theta)}) = 2\theta \] Since \( \sqrt{1-\sin^2(\theta)} = \cos(\theta) \), we can rewrite it as: \[ \sin^{-1}(2\sin(\theta)\cos(\theta)) = 2\theta \] ### Step 4: Using the Double Angle Identity Using the double angle identity, we know that: \[ 2\sin(\theta)\cos(\theta) = \sin(2\theta) \] Thus, we can rewrite our equation as: \[ \sin^{-1}(\sin(2\theta)) = 2\theta \] ### Step 5: Analyzing the Inverse Function The equation \( \sin^{-1}(\sin(2\theta)) = 2\theta \) holds true when \( 2\theta \) is in the range of \( \sin^{-1} \), which is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Therefore, we need: \[ -\frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2} \] Dividing the entire inequality by 2 gives: \[ -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \] ### Step 6: Relating Back to \( x \) Since \( \theta = \sin^{-1}(x) \), we have: \[ -\frac{\pi}{4} \leq \sin^{-1}(x) \leq \frac{\pi}{4} \] Taking the sine of all parts of the inequality, we find: \[ \sin\left(-\frac{\pi}{4}\right) \leq x \leq \sin\left(\frac{\pi}{4}\right) \] This simplifies to: \[ -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \] ### Conclusion Thus, the solution to the equation is: \[ x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

If 2le||x-2|-1|le3 , then x belongs to interval

If |cos^-1((1-x^2)/(1+x^2))| < pi/3, then x belongs to the interval

If log_(0.04) (x-1)>=log_(0.2) (x-1) then x belongs to the interval

sin^(-1)(xsqrt(x)),0 le x le 1

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

The number of distinct real roots of the equation sin^(3)x +sin^(2)x + sin x-2cosxsin^2 x- sin 2x-2cos x=0 belonging to the interval (-(pi)/(2),(pi)/(2)) is