Home
Class 12
MATHS
4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal...

`4 tan^(-1)(1/5)-tan^(-1)(1/239)` is equal to

A

`pi`

B

`pi//2`

C

`pi//3`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4 \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right) \), we will use the properties and formulas of inverse tangent functions. ### Step 1: Use the double angle formula for tangent We start by rewriting \( 4 \tan^{-1}\left(\frac{1}{5}\right) \) using the double angle formula: \[ 4 \tan^{-1}(x) = 2 \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Let \( x = \frac{1}{5} \). Then, \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2}\right) \] ### Step 2: Calculate the values Calculating the components: \[ 2 \cdot \frac{1}{5} = \frac{2}{5} \] \[ 1 - \left(\frac{1}{5}\right)^2 = 1 - \frac{1}{25} = \frac{24}{25} \] Now substituting these back into the formula: \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{\frac{2}{5}}{\frac{24}{25}}\right) = \tan^{-1}\left(\frac{2 \cdot 25}{5 \cdot 24}\right) = \tan^{-1}\left(\frac{10}{24}\right) = \tan^{-1}\left(\frac{5}{12}\right) \] Thus, \[ 4 \tan^{-1}\left(\frac{1}{5}\right) = 2 \tan^{-1}\left(\frac{5}{12}\right) \] ### Step 3: Substitute back into the original expression Now we have: \[ 4 \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right) = 2 \tan^{-1}\left(\frac{5}{12}\right) - \tan^{-1}\left(\frac{1}{239}\right) \] ### Step 4: Use the tangent subtraction formula Using the formula for the difference of two arctangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] Let \( x = \frac{5}{12} \) and \( y = \frac{1}{239} \): \[ 2 \tan^{-1}\left(\frac{5}{12}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{5}{12}}{1 - \left(\frac{5}{12}\right)^2}\right) \] ### Step 5: Calculate the components again Calculating: \[ 2 \cdot \frac{5}{12} = \frac{10}{12} = \frac{5}{6} \] \[ 1 - \left(\frac{5}{12}\right)^2 = 1 - \frac{25}{144} = \frac{119}{144} \] Now substituting back: \[ 2 \tan^{-1}\left(\frac{5}{12}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{119}{144}}\right) = \tan^{-1}\left(\frac{5 \cdot 144}{6 \cdot 119}\right) = \tan^{-1}\left(\frac{120}{119}\right) \] ### Step 6: Final substitution Now we have: \[ \tan^{-1}\left(\frac{120}{119}\right) - \tan^{-1}\left(\frac{1}{239}\right) \] Using the subtraction formula: \[ \tan^{-1}\left(\frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119} \cdot \frac{1}{239}}\right) \] ### Step 7: Calculate the numerator and denominator Calculating the numerator: \[ \frac{120}{119} - \frac{1}{239} = \frac{120 \cdot 239 - 119}{119 \cdot 239} = \frac{28680 - 119}{28441} = \frac{28561}{28441} \] Calculating the denominator: \[ 1 + \frac{120}{119} \cdot \frac{1}{239} = 1 + \frac{120}{28441} = \frac{28441 + 120}{28441} = \frac{28561}{28441} \] ### Step 8: Final result Thus, we have: \[ \tan^{-1}\left(\frac{28561}{28561}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] Therefore, the final answer is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

1/2tan^(- 1)(12/5) is equal to

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

Prove the following: 4\ tan^(-1)(1/5)-tan^(-1)(1/(239))=pi/4

Prove: 4 tan^(-1) (1/5 )- tan^(-1)( 1/239) = pi/4

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)