Home
Class 12
MATHS
If A=tan^(-1) x ,x in R then the value o...

If `A=tan^(-1) x ,x in R` then the value of sin 2A is

A

`(2x)/(1-x^(2))`

B

`(2x)/sqrt(1-x^(2))`

C

`(2x)/(1+x^(2))`

D

`(1-x^(2))/(1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin 2A \) given that \( A = \tan^{-1} x \), we can follow these steps: ### Step 1: Understand the relationship Given \( A = \tan^{-1} x \), we know that: \[ \tan A = x \] ### Step 2: Use the double angle formula We need to find \( \sin 2A \). We can use the double angle formula for sine: \[ \sin 2A = 2 \sin A \cos A \] ### Step 3: Find \( \sin A \) and \( \cos A \) To find \( \sin A \) and \( \cos A \), we can visualize \( A \) in a right triangle. In a right triangle: - The opposite side (perpendicular) to angle \( A \) is \( x \). - The adjacent side (base) to angle \( A \) is \( 1 \). Using the Pythagorean theorem, the hypotenuse \( h \) can be calculated as: \[ h = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] Now we can find \( \sin A \) and \( \cos A \): \[ \sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{x}{\sqrt{x^2 + 1}} \] \[ \cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 4: Substitute into the double angle formula Now substitute \( \sin A \) and \( \cos A \) into the double angle formula: \[ \sin 2A = 2 \sin A \cos A = 2 \left(\frac{x}{\sqrt{x^2 + 1}}\right) \left(\frac{1}{\sqrt{x^2 + 1}}\right) \] \[ = 2 \cdot \frac{x}{\sqrt{x^2 + 1}} \cdot \frac{1}{\sqrt{x^2 + 1}} = \frac{2x}{x^2 + 1} \] ### Final Answer Thus, the value of \( \sin 2A \) is: \[ \sin 2A = \frac{2x}{x^2 + 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then the value of sec^2x is_______

If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then the value of sec^2x is_______

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

If tan1^(@).tan2^(@).tan^(@)"………tan89^(@) = 4x^(2) + 2x then the value of x is

6. If tan^(−1)(1−x),tan^(−1)(x) and tan^(−1)(1+x) are in A.P., then the value of x^3+x^2 is equal to

Let f(x) = tan^(-1) (x^2-18x + a) gt 0 x in R . Then the value of a lies in

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is