Home
Class 12
MATHS
tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- ...

`tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)`

A

`1/2cos^(-1)(3/5)`

B

`1/2sin^(-1)(3/5)`

C

`1/2tan^(-1)(3/5)`

D

`tan^(-1)(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right) \), we will follow these steps: ### Step 1: Write the Left-Hand Side We start with the left-hand side of the equation: \[ LHS = \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) \] ### Step 2: Use the Formula for the Sum of Inverses We use the formula for the sum of two inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] Here, let \( x = \frac{1}{4} \) and \( y = \frac{2}{9} \). ### Step 3: Calculate \( x + y \) and \( 1 - xy \) Calculate \( x + y \): \[ x + y = \frac{1}{4} + \frac{2}{9} \] To add these fractions, we find a common denominator, which is 36: \[ x + y = \frac{9}{36} + \frac{8}{36} = \frac{17}{36} \] Now calculate \( 1 - xy \): \[ xy = \frac{1}{4} \cdot \frac{2}{9} = \frac{2}{36} = \frac{1}{18} \] Thus, \[ 1 - xy = 1 - \frac{1}{18} = \frac{18}{18} - \frac{1}{18} = \frac{17}{18} \] ### Step 4: Substitute Back into the Formula Now substitute back into the formula: \[ LHS = \tan^{-1}\left(\frac{\frac{17}{36}}{\frac{17}{18}}\right) \] This simplifies to: \[ LHS = \tan^{-1}\left(\frac{17}{36} \cdot \frac{18}{17}\right) = \tan^{-1}\left(\frac{18}{36}\right) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 5: Relate to Right-Hand Side Now, we need to show that: \[ \tan^{-1}\left(\frac{1}{2}\right) = \frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right) \] Using the formula \( 2 \tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \), we set \( x = \frac{1}{2} \): \[ 2 \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2}\right) = \tan^{-1}\left(\frac{1}{1 - \frac{1}{4}}\right) = \tan^{-1}\left(\frac{1}{\frac{3}{4}}\right) = \tan^{-1}\left(\frac{4}{3}\right) \] Thus, \[ \tan^{-1}\left(\frac{1}{2}\right) = \frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right) \] ### Conclusion We have shown that: \[ LHS = \frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right) = RHS \] Therefore, the equation is proven.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)=1/2sin^(-1)(4/5)

Prove the following: 2\ tan^(-1)(1/5)+tan^(-1)(1/8)= tan^(-1)(4/7)

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo =pi/4

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

4tan^(- 1)(1/5)=tan^(- 1)(1/70)-tan^(- 1)(1/99)+pi/4

4tan^(- 1)(1/5)=tan^(- 1)(1/70)+tan^(- 1)(1/99)+pi/4