Home
Class 12
MATHS
prove that 2tan^-1 1/3+tan^-1 1/7=pi/4...

prove that `2tan^-1 1/3+tan^-1 1/7=pi/4`

A

`tan^(-1)(49/29)`

B

`(pi)/(2)`

C

0

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( 2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Rewrite the expression using the double angle formula We start with the left-hand side: \[ 2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) \] Using the identity \( 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \), we can rewrite \( 2\tan^{-1}\left(\frac{1}{3}\right) \): \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}\right) \] ### Step 2: Simplify the expression Now, calculate the expression inside the arctangent: \[ = \tan^{-1}\left(\frac{\frac{2}{3}}{1 - \frac{1}{9}}\right) = \tan^{-1}\left(\frac{\frac{2}{3}}{\frac{8}{9}}\right) \] This simplifies to: \[ = \tan^{-1}\left(\frac{2}{3} \cdot \frac{9}{8}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 3: Combine with the other arctangent Now we can rewrite the left-hand side as: \[ \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) \] Using the identity \( \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \), we apply this to our expression: \[ = \tan^{-1}\left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}}\right) \] ### Step 4: Simplify the combined expression Calculating the numerator: \[ \frac{3}{4} + \frac{1}{7} = \frac{21 + 4}{28} = \frac{25}{28} \] Calculating the denominator: \[ 1 - \frac{3}{4} \cdot \frac{1}{7} = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] Thus, we have: \[ = \tan^{-1}\left(\frac{\frac{25}{28}}{\frac{25}{28}}\right) = \tan^{-1}(1) \] ### Step 5: Final result Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we conclude: \[ 2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4} \] This proves the statement.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Prove that: 2tan^(-1) {1/2}+tan^(-1) {1/7}=tan^(-1) {(31)/(17)}

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that: tan^-1 (1/3)+tan^-1 (2/9)+tan^-1 (4/33)+… tooo= pi/4

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo =pi/4

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0, -pi/2 if x<0

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

    Text Solution

    |

  2. If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

    Text Solution

    |

  3. prove that 2tan^-1 1/3+tan^-1 1/7=pi/4

    Text Solution

    |

  4. cos^(-1)(15/17)+2 tan^(-1)(1/5)=

    Text Solution

    |

  5. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  6. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  7. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  8. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  9. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  10. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  11. Let x(1) " and " x(2) ( x(1) gt x(2)) be roots of the equation sin^(-...

    Text Solution

    |

  12. The value of cos(2cos^(-1)0.8) is

    Text Solution

    |

  13. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  14. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  15. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  18. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  19. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4ta...

    Text Solution

    |

  20. If A=tan^(-1)((x sqrt(3))/(2k-x)) and B= tan^(-1)((2x-k)/(k sqrt(3))),...

    Text Solution

    |