Home
Class 12
MATHS
cos^(-1)(15/17)+2 tan^(-1)(1/5)=...

`cos^(-1)(15/17)+2 tan^(-1)(1/5)=`

A

`(pi)/(2)`

B

`cos^(-1)(171)/(221)`

C

`(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}\left(\frac{15}{17}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) \), we will follow these steps: ### Step 1: Simplify \( 2 \tan^{-1}\left(\frac{1}{5}\right) \) Using the double angle formula for tangent, we have: \[ 2 \tan^{-1}(x) = \tan^{-1\left(\frac{2x}{1-x^2}\right)} \] Let \( x = \frac{1}{5} \): \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2}\right) \] Calculating the denominator: \[ 1 - \left(\frac{1}{5}\right)^2 = 1 - \frac{1}{25} = \frac{24}{25} \] Now substituting back: \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{\frac{2}{5}}{\frac{24}{25}}\right) = \tan^{-1}\left(\frac{2 \cdot 25}{5 \cdot 24}\right) = \tan^{-1}\left(\frac{10}{24}\right) = \tan^{-1}\left(\frac{5}{12}\right) \] ### Step 2: Substitute back into the original expression Now we can rewrite the original expression: \[ \cos^{-1}\left(\frac{15}{17}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) = \cos^{-1}\left(\frac{15}{17}\right) + \tan^{-1}\left(\frac{5}{12}\right) \] ### Step 3: Let \( \cos^{-1}\left(\frac{15}{17}\right) = \theta \) This means: \[ \cos(\theta) = \frac{15}{17} \] Using the Pythagorean theorem in a right triangle where the adjacent side is 15 and the hypotenuse is 17, we find the opposite side: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \implies \sin^2(\theta) = 1 - \left(\frac{15}{17}\right)^2 = 1 - \frac{225}{289} = \frac{64}{289} \] Thus, \[ \sin(\theta) = \frac{8}{17} \] ### Step 4: Find \( \tan(\theta) \) Now we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{8}{17}}{\frac{15}{17}} = \frac{8}{15} \] So we have: \[ \theta = \tan^{-1}\left(\frac{8}{15}\right) \] ### Step 5: Combine the two \( \tan^{-1} \) terms Now we have: \[ \tan^{-1}\left(\frac{8}{15}\right) + \tan^{-1}\left(\frac{5}{12}\right) \] Using the formula for the sum of two arctangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] Let \( x = \frac{8}{15} \) and \( y = \frac{5}{12} \): \[ \frac{x+y}{1-xy} = \frac{\frac{8}{15} + \frac{5}{12}}{1 - \left(\frac{8}{15} \cdot \frac{5}{12}\right)} \] Calculating the numerator: \[ \frac{8 \cdot 12 + 5 \cdot 15}{15 \cdot 12} = \frac{96 + 75}{180} = \frac{171}{180} \] Calculating the denominator: \[ 1 - \frac{40}{180} = \frac{140}{180} = \frac{7}{9} \] Thus: \[ \tan^{-1}\left(\frac{171/180}{7/9}\right) = \tan^{-1}\left(\frac{171 \cdot 9}{140 \cdot 10}\right) = \tan^{-1}\left(\frac{171}{140}\right) \] ### Step 6: Final Result Thus, we have: \[ \cos^{-1}\left(\frac{15}{17}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{171}{140}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

The value of cot(cose c^(-1)(5/3)+ tan^(-1)(2/3)) is: (1) 6/(17) (2) 3/(17) (2) 4/(17) (4) 5/(17)

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

Simplify (i) sin(pitan{cot^(-1)((-2)/3)}) (ii) sin(2"tan"^(-1)1/2) (iii) cos(2cos^(-1)(1//5)+sin^(-1)(1//5))

Show that 1/2 cos^-1 (3/5) = tan^-1 (1/2)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that: "cos"^(-1)63/65+2"tan"^(-1)1/5="sin"^(-1)3/5

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)=1/2sin^(-1)(4/5)

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

    Text Solution

    |

  2. prove that 2tan^-1 1/3+tan^-1 1/7=pi/4

    Text Solution

    |

  3. cos^(-1)(15/17)+2 tan^(-1)(1/5)=

    Text Solution

    |

  4. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  5. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  6. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  7. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  8. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  9. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  10. Let x(1) " and " x(2) ( x(1) gt x(2)) be roots of the equation sin^(-...

    Text Solution

    |

  11. The value of cos(2cos^(-1)0.8) is

    Text Solution

    |

  12. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  13. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  14. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  17. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  18. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4ta...

    Text Solution

    |

  19. If A=tan^(-1)((x sqrt(3))/(2k-x)) and B= tan^(-1)((2x-k)/(k sqrt(3))),...

    Text Solution

    |

  20. Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

    Text Solution

    |