Home
Class 12
MATHS
sin^(-1)(3/5)+tan^(-1)(1/7)=...

`sin^(-1)(3/5)+tan^(-1)(1/7)=`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`cos^(-1)(4/5)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) \), we will follow these steps: ### Step 1: Set the angle for sine inverse Let \( \theta = \sin^{-1}\left(\frac{3}{5}\right) \). This implies that: \[ \sin \theta = \frac{3}{5} \] ### Step 2: Draw a right triangle In a right triangle, the sine of an angle is defined as the ratio of the length of the opposite side (perpendicular) to the length of the hypotenuse. Here, we can denote: - Opposite side = 3 - Hypotenuse = 5 ### Step 3: Find the base using Pythagorean theorem Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Opposite}^2 + \text{Base}^2 \] Substituting the known values: \[ 5^2 = 3^2 + \text{Base}^2 \implies 25 = 9 + \text{Base}^2 \] \[ \text{Base}^2 = 25 - 9 = 16 \implies \text{Base} = 4 \] ### Step 4: Find \( \tan \theta \) Now we can find \( \tan \theta \): \[ \tan \theta = \frac{\text{Opposite}}{\text{Base}} = \frac{3}{4} \] ### Step 5: Rewrite the expression Since \( \theta = \sin^{-1}\left(\frac{3}{5}\right) \), we can rewrite the expression: \[ \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) \] ### Step 6: Use the formula for the sum of arctangents Using the formula for the sum of two arctangents: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] Let \( x = \frac{3}{4} \) and \( y = \frac{1}{7} \): \[ \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}}\right) \] ### Step 7: Calculate the numerator and denominator Calculating the numerator: \[ \frac{3}{4} + \frac{1}{7} = \frac{3 \cdot 7 + 1 \cdot 4}{4 \cdot 7} = \frac{21 + 4}{28} = \frac{25}{28} \] Calculating the denominator: \[ 1 - \frac{3}{4} \cdot \frac{1}{7} = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] ### Step 8: Combine the results Now substituting back into the arctangent formula: \[ \tan^{-1}\left(\frac{\frac{25}{28}}{\frac{25}{28}}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer Thus, the value of \( \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) \) is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Prove the following: 2\ sin^(-1)(3/5)=tan^(-1)(24/7)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: 2sin^(-1)(3/5)=tan^(-1)((24)/7)

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

Prove that: sin^(-1)(8/17)+sin^(-1)(3/5)=tan^(-1)(77/36)

Prove that: sin^(-1)(-4/5)=tan^(-1)(-4/3)=cos^(-1)(-3/5)-pi

Prove the following: 2\ tan^(-1)(1/5)+tan^(-1)(1/8)= tan^(-1)(4/7)

Prove the following: 2\ sin^(-1)3/5=tan^(-1)(24)/7

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4